HOME
*





Type Erasure
In programming languages, type erasure is the load-time process by which explicit type annotations are removed from a program, before it is executed at run-time. Operational semantics that do not require programs to be accompanied by types are called ''type-erasure semantics'', to be contrasted with ''type-passing semantics''. The possibility of giving type-erasure semantics is a kind of abstraction principle, ensuring that the run-time execution of a program does not depend on type information. In the context of generic programming, the opposite of type erasure is called reification. Type inference The reverse operation is called type inference. Though type erasure can be used as an easy way to define typing over implicitly typed languages (an implicitly typed term is well-typed if and only if it is the erasure of a well-typed explicitly typed lambda term), it does not always lead to an algorithm to check implicitly typed terms. See also * Template (C++) * Problems with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Programming Languages
A programming language is a system of notation for writing computer programs. Most programming languages are text-based formal languages, but they may also be graphical. They are a kind of computer language. The description of a programming language is usually split into the two components of syntax (form) and semantics (meaning), which are usually defined by a formal language. Some languages are defined by a specification document (for example, the C programming language is specified by an ISO Standard) while other languages (such as Perl) have a dominant implementation that is treated as a reference. Some languages have both, with the basic language defined by a standard and extensions taken from the dominant implementation being common. Programming language theory is the subfield of computer science that studies the design, implementation, analysis, characterization, and classification of programming languages. Definitions There are many considerations when defining w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Loader (computing)
In computer systems a loader is the part of an operating system that is responsible for loading programs and libraries. It is one of the essential stages in the process of starting a program, as it places programs into memory and prepares them for execution. Loading a program involves memory-mapping the contents of the executable file containing the program instructions into memory, and then carrying out other required preparatory tasks to prepare the executable for running. Once loading is complete, the operating system starts the program by passing control to the loaded program code. All operating systems that support program loading have loaders, apart from highly specialized computer systems that only have a fixed set of specialized programs. Embedded systems typically do not have loaders, and instead, the code executes directly from ROM or similar. In order to load the operating system itself, as part of booting, a specialized boot loader is used. In many operating system ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Type Signature
In computer science, a type signature or type annotation defines the inputs and outputs for a function, subroutine or method. A type signature includes the number, types, and order of the arguments contained by a function. A type signature is typically used during overload resolution for choosing the correct definition of a function to be called among many overloaded forms. Examples C/C++ In C and C++, the type signature is declared by what is commonly known as a function prototype. In C/C++, a function declaration reflects its use; for example, a function pointer with the signature would be called as: char c; double d; int retVal = (*fPtr)(c, d); Erlang In Erlang, type signatures may be optionally declared, as: -spec(function_name(type1(), type2(), ...) -> out_type()). For example: -spec(is_even(number()) -> boolean()). Haskell A type signature in Haskell generally takes the following form: functionName :: arg1Type -> arg2Type -> ... -> argNType Notice that t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Run Time (program Lifecycle Phase)
In computer science, runtime, run time, or execution time is the final phase of a computer programs life cycle, in which the code is being executed on the computer's central processing unit (CPU) as machine code. In other words, "runtime" is the running phase of a program. A runtime error is detected after or during the execution (running state) of a program, whereas a compile-time error is detected by the compiler before the program is ever executed. Type checking, register allocation, code generation, and code optimization are typically done at compile time, but may be done at runtime depending on the particular language and compiler. Many other runtime errors exist and are handled differently by different programming languages, such as division by zero errors, domain errors, array subscript out of bounds errors, arithmetic underflow errors, several types of underflow and overflow errors, and many other runtime errors generally considered as software bugs which may or may ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Operational Semantics
Operational semantics is a category of formal programming language semantics in which certain desired properties of a program, such as correctness, safety or security, are verified by constructing proofs from logical statements about its execution and procedures, rather than by attaching mathematical meanings to its terms (denotational semantics). Operational semantics are classified in two categories: structural operational semantics (or small-step semantics) formally describe how the ''individual steps'' of a computation take place in a computer-based system; by opposition natural semantics (or big-step semantics) describe how the ''overall results'' of the executions are obtained. Other approaches to providing a formal semantics of programming languages include axiomatic semantics and denotational semantics. The operational semantics for a programming language describes how a valid program is interpreted as sequences of computational steps. These sequences then ''are'' the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abstraction Principle (computer Programming)
In software engineering and programming language theory, the abstraction principle (or the principle of abstraction) is a basic dictum that aims to reduce duplication of information in a program (usually with emphasis on code duplication) whenever practical by making use of abstraction (computer science), abstractions provided by the programming language or software libraries . The principle is sometimes stated as a recommendation to the programmer, but sometimes stated as a requirement of the programming language, assuming it is self-understood why abstractions are desirable to use. The origins of the principle are uncertain; it has been reinvented a number of times, sometimes under a different name, with slight variations. When read as recommendations to the programmer, the abstraction principle can be generalized as the "don't repeat yourself" (DRY) principle, which recommends avoiding the duplication of information in general, and also avoiding the duplication of human effort inv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generic Programming
Generic programming is a style of computer programming in which algorithms are written in terms of types ''to-be-specified-later'' that are then ''instantiated'' when needed for specific types provided as parameters. This approach, pioneered by the ML programming language in 1973, permits writing common functions or types that differ only in the set of types on which they operate when used, thus reducing duplication. Such software entities are known as ''generics'' in Ada, C#, Delphi, Eiffel, F#, Java, Nim, Python, Go, Rust, Swift, TypeScript and Visual Basic .NET. They are known as '' parametric polymorphism'' in ML, Scala, Julia, and Haskell (the Haskell community also uses the term "generic" for a related but somewhat different concept); ''templates'' in C++ and D; and ''parameterized types'' in the influential 1994 book ''Design Patterns''. The term "generic programming" was originally coined by David Musser and Alexander Stepanov in a more specific se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reification (computer Science)
Reification is the process by which an abstract idea about a computer program is turned into an explicit data model or other object created in a programming language. A computable/addressable object—a resource—is created in a system as a proxy for a non computable/addressable object. By means of reification, something that was previously implicit, unexpressed, and possibly inexpressible is explicitly formulated and made available to conceptual (logical or computational) manipulation. Informally, reification is often referred to as "making something a first-class citizen" within the scope of a particular system. Some aspect of a system can be reified at ''language design time'', which is related to reflection in programming languages. It can be applied as a stepwise refinement at ''system design time''. Reification is one of the most frequently used techniques of conceptual analysis and knowledge representation. Reflective programming languages In the context of programming ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Type Inference
Type inference refers to the automatic detection of the type of an expression in a formal language. These include programming languages and mathematical type systems, but also natural languages in some branches of computer science and linguistics. Nontechnical explanation Types in a most general view can be associated to a designated use suggesting and restricting the activities possible for an object of that type. Many nouns in language specify such uses. For instance, the word leash indicates a different use than the word line. Calling something a table indicates another designation than calling it firewood, though it might be materially the same thing. While their material properties make things usable for some purposes, they are also subject of particular designations. This is especially the case in abstract fields, namely mathematics and computer science, where the material is finally only bits or formulas. To exclude unwanted, but materially possible uses, the concept of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q'', there could be other scenarios where ''P'' is true and ''Q'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lambda Term
Lambda calculus (also written as ''λ''-calculus) is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation that can be used to simulate any Turing machine. It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics. Lambda calculus consists of constructing § lambda terms and performing § reduction operations on them. In the simplest form of lambda calculus, terms are built using only the following rules: * x – variable, a character or string representing a parameter or mathematical/logical value. * (\lambda x.M) – abstraction, function definition (M is a lambda term). The variable x becomes bound in the expression. * (M\ N) – application, applying a function M to an argument N. M and N are lambda terms. The reduction operations include: * (\lambda x.M \rightarrow(\la ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Template (C++)
Template may refer to: Tools * Die (manufacturing), used to cut or shape material * Mold, in a molding process * Stencil, a pattern or overlay used in graphic arts (drawing, painting, etc.) and sewing to replicate letters, shapes or designs Computing * The main document from which mail merge documents are created * Style sheet (web development) or master page, a sheet or page on which a user can globally edit and format graphic elements and text common to each page of a document * Template (C++), a tool for generic programming in the C++ language * Template (file format), a standardized, non-executable file type used by computer software as a pre-formatted example on which to base other files, especially documents * Template (word processing), a standard document containing layout and styles used to configure word processing software * Template metaprogramming, a programming technique used by a compiler to generate temporary source code * Template method pattern, an object-orien ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]