HOME
*



picture info

Turán's Theorem
In graph theory, Turán's theorem bounds the number of edges that can be included in an undirected graph that does not have a complete subgraph of a given size. It is one of the central results of extremal graph theory, an area studying the largest or smallest graphs with given properties, and is a special case of the forbidden subgraph problem on the maximum number of edges in a graph that does not have a given subgraph. An example of an n-vertex graph that does not contain any (r+1)-vertex clique K_ may be formed by partitioning the set of n vertices into r parts of equal or nearly equal size, and connecting two vertices by an edge whenever they belong to two different parts. The resulting graph is the Turán graph T(n,r). Turán's theorem states that the Turán graph has the largest number of edges among all -free -vertex graphs. Turán's theorem, and the Turán graphs giving its extreme case, were first described and studied by Hungarian mathematician Pál Turán in 1941. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Turán's Method
In mathematics, Turán's method provides lower bounds for exponential sums and complex power sums. The method has been applied to problems in equidistribution. The method applies to sums of the form : s_\nu = \sum_^N b_n z_n^\nu \ where the ''b'' and ''z'' are complex numbers and ''ν'' runs over a range of integers. There are two main results, depending on the size of the complex numbers ''z''. Turán's first theorem The first result applies to sums ''s''ν where , z_n, \ge 1 for all ''n''. For any range of ''ν'' of length ''N'', say ''ν'' = ''M'' + 1, ..., ''M'' + ''N'', there is some ''ν'' with , ''s''''ν'', at least ''c''(''M'', ''N''), ''s''0, where : c(M,N) = \left(\right)^ \ . The sum here may be replaced by the weaker but simpler \left(\right)^. We may deduce the Fabry gap theorem from this result. Turán's second theorem The second result applies to sums ''s''ν where , z_n, \le 1 for all ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Paul Erdős
Paul Erdős ( hu, Erdős Pál ; 26 March 1913 – 20 September 1996) was a Hungarian mathematician. He was one of the most prolific mathematicians and producers of mathematical conjectures of the 20th century. pursued and proposed problems in discrete mathematics, graph theory, number theory, mathematical analysis, approximation theory, set theory, and probability theory. Much of his work centered around discrete mathematics, cracking many previously unsolved problems in the field. He championed and contributed to Ramsey theory, which studies the conditions in which order necessarily appears. Overall, his work leaned towards solving previously open problems, rather than developing or exploring new areas of mathematics. Erdős published around 1,500 mathematical papers during his lifetime, a figure that remains unsurpassed. He firmly believed mathematics to be a social activity, living an itinerant lifestyle with the sole purpose of writing mathematical papers with other mathem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pancyclic Graph
In the mathematical study of graph theory, a pancyclic graph is a directed graph or undirected graph that contains cycles of all possible lengths from three up to the number of vertices in the graph.. Pancyclic graphs are a generalization of Hamiltonian graphs, graphs which have a cycle of the maximum possible length. Definitions An ''n''-vertex graph ''G'' is pancyclic if, for every k in the range 3 \leq k \leq n \; ,G contains a cycle of length k. It is node-pancyclic or vertex-pancyclic if, for every vertex ''v'' and every ''k'' in the same range, it contains a cycle of length ''k'' that contains ''v''.. Similarly, it is edge-pancyclic if, for every edge ''e'' and every ''k'' in the same range, it contains a cycle of length ''k'' that contains ''e''. A bipartite graph cannot be pancyclic, because it does not contain any odd-length cycles, but it is said to be bipancyclic if it contains cycles of all even lengths from 4 to ''n''. Planar graphs A maximal outerplanar graph is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complete Bipartite Graph
In the mathematical field of graph theory, a complete bipartite graph or biclique is a special kind of bipartite graph where every vertex of the first set is connected to every vertex of the second set..Electronic edition page 17. Graph theory itself is typically dated as beginning with Leonhard Euler's 1736 work on the Seven Bridges of Königsberg. However, drawings of complete bipartite graphs were already printed as early as 1669, in connection with an edition of the works of Ramon Llull edited by Athanasius Kircher. Llull himself had made similar drawings of complete graphs three centuries earlier.. Definition A complete bipartite graph is a graph whose vertices can be partitioned into two subsets and such that no edge has both endpoints in the same subset, and every possible edge that could connect vertices in different subsets is part of the graph. That is, it is a bipartite graph such that for every two vertices and, is an edge in . A complete bipartite graph w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equivalence Class
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a and b belong to the same equivalence class if, and only if, they are equivalent. Formally, given a set S and an equivalence relation \,\sim\, on S, the of an element a in S, denoted by is the set \ of elements which are equivalent to a. It may be proven, from the defining properties of equivalence relations, that the equivalence classes form a partition of S. This partition—the set of equivalence classes—is sometimes called the quotient set or the quotient space of S by \,\sim\,, and is denoted by S / \sim. When the set S has some structure (such as a group operation or a topology) and the equivalence relation \,\sim\, is compatible with this structure, the quotient set often inherits a similar structure from its parent set. Examp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equivalence Relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class. Notation Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation R; the most common are "a \sim b" and "", which are used when R is implicit, and variations of "a \sim_R b", "", or "" to specify R explicitly. Non-equivalence may be written "" or "a \not\equiv b". Definition A binary relation \,\sim\, on a set X is said to be an equivalence relation, if and only if it is reflexive, symmetric and transitive. That is, for all a, b, and c in X: * a \sim a ( ref ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complement Graph
In the mathematical field of graph theory, the complement or inverse of a graph is a graph on the same vertices such that two distinct vertices of are adjacent if and only if they are not adjacent in . That is, to generate the complement of a graph, one fills in all the missing edges required to form a complete graph, and removes all the edges that were previously there.. The complement is not the set complement of the graph; only the edges are complemented. Definition Let be a simple graph and let consist of all 2-element subsets of . Then is the complement of , where is the relative complement of in . For directed graphs, the complement can be defined in the same way, as a directed graph on the same vertex set, using the set of all 2-element ordered pairs of in place of the set in the formula above. In terms of the adjacency matrix ''A'' of the graph, if ''Q'' is the adjacency matrix of the complete graph of the same number of vertices (i.e. all entries are unity ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Random Permutation
A random permutation is a random ordering of a set of objects, that is, a permutation-valued random variable. The use of random permutations is often fundamental to fields that use randomized algorithms such as coding theory, cryptography, and simulation. A good example of a random permutation is the shuffling of a deck of cards: this is ideally a random permutation of the 52 cards. Generating random permutations Entry-by-entry brute force method One method of generating a random permutation of a set of length ''n'' uniformly at random (i.e., each of the ''n''! permutations is equally likely to appear) is to generate a sequence by taking a random number between 1 and ''n'' sequentially, ensuring that there is no repetition, and interpreting this sequence (''x''1, ..., ''x''''n'') as the permutation : \begin 1 & 2 & 3 & \cdots & n \\ x_1 & x_2 & x_3 & \cdots & x_n \\ \end, shown here in two-line notation. This brute-force method will require occasional retries whenever the ra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Independent Set (graph Theory)
In graph theory, an independent set, stable set, coclique or anticlique is a set of vertices in a graph, no two of which are adjacent. That is, it is a set S of vertices such that for every two vertices in S, there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in S. A set is independent if and only if it is a clique in the graph's complement. The size of an independent set is the number of vertices it contains. Independent sets have also been called "internally stable sets", of which "stable set" is a shortening. A maximal independent set is an independent set that is not a proper subset of any other independent set. A maximum independent set is an independent set of largest possible size for a given graph G. This size is called the independence number of ''G'' and is usually denoted by \alpha(G). The optimization problem of finding such a set is called the maximum independent set problem. It is a strongly NP-hard problem. As such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Joel Spencer
Joel Spencer (born April 20, 1946) is an American mathematician. He is a combinatorialist who has worked on probabilistic methods in combinatorics and on Ramsey theory. He received his doctorate from Harvard University in 1970, under the supervision of Andrew Gleason. He is currently () a professor at the Courant Institute of Mathematical Sciences of New York University. Spencer's work was heavily influenced by Paul Erdős, with whom he coauthored many papers (giving him an Erdős number of 1). In 1963, while studying at the Massachusetts Institute of Technology, Spencer became a Putnam Fellow. In 1984 Spencer received a Lester R. Ford Award. He was an Erdős Lecturer at Hebrew University of Jerusalem in 2001. In 2012 he became a fellow of the American Mathematical Society. He was elected as a fellow of the Society for Industrial and Applied Mathematics in 2017, "for contributions to discrete mathematics and theory of computing, particularly random graphs and networks, Ramsey ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]