HOME
*





Truthful Cake-cutting
Truthful cake-cutting is the study of algorithms for fair cake-cutting that are also truthful mechanisms, i.e., they incentivize the participants to reveal their true valuations to the various parts of the cake. The classic divide and choose procedure for cake-cutting is not truthful: if the cutter knows the chooser's preferences, he can get much more than 1/2 by acting strategically. For example, suppose the cutter values a piece by its size while the chooser values a piece by the amount of chocolate in it. So the cutter can cut the cake into two pieces with almost the same amount of chocolate, such that the smaller piece has slightly more chocolate. Then, the chooser will take the smaller piece and the cutter will win the larger piece, which may be worth much more than 1/2 (depending on how the chocolate is distributed). Randomized mechanisms There is a trivial randomized truthful mechanism for fair cake-cutting: select a single agent uniformly at random, and give him/her the en ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fair Cake-cutting
Fair cake-cutting is a kind of fair division problem. The problem involves a ''heterogeneous'' resource, such as a cake with different toppings, that is assumed to be ''divisible'' – it is possible to cut arbitrarily small pieces of it without destroying their value. The resource has to be divided among several partners who have different preferences over different parts of the cake, i.e., some people prefer the chocolate toppings, some prefer the cherries, some just want as large a piece as possible. The division should be ''unanimously'' fair - each person should receive a piece that he or she believes to be a fair share. The "cake" is only a metaphor; procedures for fair cake-cutting can be used to divide various kinds of resources, such as land estates, advertisement space or broadcast time. The prototypical procedure for fair cake-cutting is divide and choose, which is mentioned already in the book of Genesis. It solves the fair division problem for two people. The modern ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pareto Optimal
Pareto efficiency or Pareto optimality is a situation where no action or allocation is available that makes one individual better off without making another worse off. The concept is named after Vilfredo Pareto (1848–1923), Italian civil engineer and economist, who used the concept in his studies of economic efficiency and income distribution. The following three concepts are closely related: * Given an initial situation, a Pareto improvement is a new situation where some agents will gain, and no agents will lose. * A situation is called Pareto-dominated if there exists a possible Pareto improvement. * A situation is called Pareto-optimal or Pareto-efficient if no change could lead to improved satisfaction for some agent without some other agent losing or, equivalently, if there is no scope for further Pareto improvement. The Pareto front (also called Pareto frontier or Pareto set) is the set of all Pareto-efficient situations. Pareto originally used the word "optimal" for th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fair Division Protocols
A fair (archaic: faire or fayre) is a gathering of people for a variety of entertainment or commercial activities. Fairs are typically temporary with scheduled times lasting from an afternoon to several weeks. Types Variations of fairs include: * Art fairs, including art exhibitions and arts festivals * County fair (USA) or county show (UK), a public agricultural show exhibiting the equipment, animals, sports and recreation associated with agriculture and animal husbandry. * Festival, an event ordinarily coordinated with a theme e.g. music, art, season, tradition, history, ethnicity, religion, or a national holiday. * Health fair, an event designed for outreach to provide basic preventive medicine and medical screening * Historical reenactments, including Renaissance fairs and Dickens fairs * Horse fair, an event where people buy and sell horses. * Job fair, event in which employers, recruiters, and schools give information to potential employees. * Regional or state fair, an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Truthful Resource Allocation
Truthful resource allocation is the problem of allocating resources among agents with different valuations over the resources, such that agents are incentivized to reveal their true valuations over the resources. Model There are ''m'' resources that are assumed to be ''homogeneous'' and ''divisible''. Examples are: * Materials, such as wood or metal; * Virtual resources, such as CPU time or computer memory; * Financial resources, such as shares in firms. There are ''n'' agents. Each agent has a function that attributes a numeric value to each "bundle" (combination of resources). It is often assumed that the agents' value functions are ''linear'', so that if the agent receives a fraction ''rj'' of each resource ''j'', then his/her value is the sum of ''rj'' *''vj'' . Design goals The goal is to design a truthful mechanism, that will induce the agents to reveal their true value functions, and then calculate an allocation that satisfies some fairness and efficiency objectives. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strategic Fair Division
Strategic fair division is the branch of fair division in which the participants are assumed to hide their preferences and act strategically in order to maximize their own utility, rather than playing sincerely according to their true preferences. To illustrate the difference between strategic fair division and classic fair division, consider the divide and choose procedure for dividing a cake among two agents. In classic fair division, it is assumed that the cutter cuts the cake into two pieces that are equal in his eyes, and thus he always gets a piece that he values at exactly 1/2 of the total cake value. However, if the cutter knows the chooser's preferences, he can get much more than 1/2 by acting strategically. For example, suppose the cutter values a piece by its size while the chooser values a piece by the amount of chocolate in it. So the cutter can cut the cake into two pieces with almost the same amount of chocolate, such that the smaller piece has slightly more chocol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetric Cake-cutting
Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definition, and is usually used to refer to an object that is invariant under some transformations; including translation, reflection, rotation or scaling. Although these two meanings of "symmetry" can sometimes be told apart, they are intricately related, and hence are discussed together in this article. Mathematical symmetry may be observed with respect to the passage of time; as a spatial relationship; through geometric transformations; through other kinds of functional transformations; and as an aspect of abstract objects, including theoretic models, language, and music. This article describes symmetry from three perspectives: in mathematics, including geometry, the most familiar type of symmetry for many people; in science and nature; a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Envy-free
Envy-freeness, also known as no-envy, is a criterion for fair division. It says that, when resources are allocated among people with equal rights, each person should receive a share that is, in their eyes, at least as good as the share received by any other agent. In other words, no person should feel envy. General definitions Suppose a certain resource is divided among several agents, such that every agent i receives a share X_i. Every agent i has a personal preference relation \succeq_i over different possible shares. The division is called envy-free (EF) if for all i and j: :::X_i \succeq_i X_j Another term for envy-freeness is no-envy (NE). If the preference of the agents are represented by a value functions V_i, then this definition is equivalent to: :::V_i(X_i) \geq V_i(X_j) Put another way: we say that agent i ''envies'' agent j if i prefers the piece of j over his own piece, i.e.: :::X_i \prec_i X_j :::V_i(X_i) 2 the problem is much harder. See envy-free cake-cutting. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Utilitarian Cake-cutting
Utilitarian cake-cutting (also called maxsum cake-cutting) is a rule for dividing a heterogeneous resource, such as a cake or a land-estate, among several partners with different cardinal utility functions, such that the ''sum'' of the utilities of the partners is as large as possible. It is a special case of the utilitarian social choice rule. Utilitarian cake-cutting is often not "fair"; hence, utilitarianism is often in conflict with fair cake-cutting. Example Consider a cake with two parts: chocolate and vanilla, and two partners: Alice and George, with the following valuations: The utilitarian rule gives each part to the partner with the highest utility. In this case, the utilitarian rule gives the entire chocolate to Alice and the entire Vanilla to George. The maxsum is 13. The utilitarian division is not fair: it is not proportional since George receives less than half the total cake value, and it is not envy-free since George envies Alice. Notation The cake is calle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symmetric Fair Cake-cutting
Symmetric fair cake-cutting is a variant of the fair cake-cutting problem, in which fairness is applied not only to the final outcome, but also to the assignment of roles in the division procedure. As an example, consider a birthday cake that has to be divided between two children with different tastes, such that each child feels that his/her share is "fair", i.e., worth at least 1/2 of the entire cake. They can use the classic divide and choose procedure: Alice cuts the cake into two pieces worth exactly 1/2 in her eyes, and George chooses the piece that he considers more valuable. The outcome is always fair. However, the procedure is not symmetric: while Alice always gets a value of exactly 1/2 of her value, George may get much more than 1/2 of his value. Thus, while Alice does not envy George's share, she does envy George's role in the procedure. In contrast, consider the alternative procedure in which Alice and George both make half-marks on the cake, i.e., each of them marks t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chore Division
Chore division is a fair division problem in which the divided resource is undesirable, so that each participant wants to get as little as possible. It is the mirror-image of the fair cake-cutting problem, in which the divided resource is desirable so that each participant wants to get as much as possible. Both problems have heterogeneous resources, meaning that the resources are nonuniform. In cake division, cakes can have edge, corner, and middle pieces along with different amounts of frosting. Whereas in chore division, there are different chore types and different amounts of time needed to finish each chore. Similarly, both problems assume that the resources are divisible. Chores can be infinitely divisible, because the finite set of chores can be partitioned by chore or by time. For example, a load of laundry could be partitioned by the number of articles of clothing and/or by the amount of time spent loading the machine. The problems differ, however, in the desirability of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Externality
In economics, an externality or external cost is an indirect cost or benefit to an uninvolved third party that arises as an effect of another party's (or parties') activity. Externalities can be considered as unpriced goods involved in either consumer or producer market transactions. Air pollution from motor vehicles is one example. The cost of air pollution to society is not paid by either the producers or users of motorized transport to the rest of society. Water pollution from mills and factories is another example. All consumers are all made worse off by pollution but are not compensated by the market for this damage. A positive externality is when an individual's consumption in a market increases the well-being of others, but the individual does not charge the third party for the benefit. The third party is essentially getting a free product. An example of this might be the apartment above a bakery receiving the benefit of enjoyment from smelling fresh pastries every mornin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Free Disposal
In various parts of economics, the term free disposal implies that resources can be discarded without any cost. For example, a fair division setting with free disposal is a setting where some resources have to be divided fairly, but some of the resources may be left undivided, discarded or donated. Examples of situations with free disposal are allocation of food, clothes jewels etc. Examples of situations ''without'' free disposal are: * Chore division - since all chores must be done. * Allocation of land with an old structure - since the structure may have to be destructed, and destruction is costly. * Allocation of an old car - since the car may have to be carried away to used cars garage, and moving it may be costly. * Allocation of shares in a firm that may have debts - since the firm cannot be disposed of without paying its debts first. The free disposal assumption may be useful for several reasons: * It enables truthful cake-cutting algorithms: The option to discard some of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]