Triangular Grid
   HOME



picture info

Triangular Grid
In geometry, the triangular tiling or triangular tessellation is one of the three Euclidean tilings by convex regular polygons#Regular tilings, regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees. The triangular tiling has Schläfli symbol of English mathematician John Horton Conway, John Conway called it a deltille, named from the triangular shape of the Greek letter Delta (letter), delta (Δ). The triangular tiling can also be called a kishextille by a Conway kis operator, kis operation that adds a center point and triangles to replace the faces of a hextille. It is one of List of regular polytopes#Euclidean tilings, three regular tilings of the plane. The other two are the square tiling and the hexagonal tiling. Uniform colorings There are 9 distinct uniform colorings of a triangular ti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a ''List of geometers, geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point (geometry), point, line (geometry), line, plane (geometry), plane, distance, angle, surface (mathematics), surface, and curve, as fundamental concepts. Originally developed to model the physical world, geometry has applications in almost all sciences, and also in art, architecture, and other activities that are related to graphics. Geometry also has applications in areas of mathematics that are apparently unrelated. For example, methods of algebraic geometry are fundamental in Wiles's proof of Fermat's Last Theorem, Wiles's proof of Fermat's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Uniform Triangular Tiling 111111
A uniform is a variety of costume worn by members of an organization while usually participating in that organization's activity. Modern uniforms are most often worn by armed forces and paramilitary organizations such as police, emergency services, security guards, in some workplaces and schools, and by inmates in prisons. In some countries, some other officials also wear uniforms in their duties; such is the case of the Commissioned Corps of the United States Public Health Service or the French prefects. For some organizations, such as police, it may be illegal for non-members to wear the uniform. Etymology From the Latin ''unus'' (meaning one), and ''forma'' (meaning form). Variants Corporate and work uniforms Workers sometimes wear uniforms or corporate clothing of one nature or another. Workers required to wear a uniform may include retail workers, bank and post-office workers, public-security and health-care workers, blue-collar employees, personal trainers in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simplectic Honeycomb
In geometry, the simplicial honeycomb (or -simplex honeycomb) is a dimensional infinite series of honeycombs, based on the _n affine Coxeter group symmetry. It is represented by a Coxeter-Dynkin diagram as a cyclic graph of nodes with one node ringed. It is composed of -simplex facets, along with all rectified -simplices. It can be thought of as an -dimensional hypercubic honeycomb that has been subdivided along all hyperplanes x+y+\cdots\in\mathbb, then stretched along its main diagonal until the simplices on the ends of the hypercubes become regular. The vertex figure of an -''simplex honeycomb'' is an expanded -simplex. In 2 dimensions, the honeycomb represents the triangular tiling, with Coxeter graph filling the plane with alternately colored triangles. In 3 dimensions it represents the tetrahedral-octahedral honeycomb, with Coxeter graph filling space with alternately tetrahedral and octahedral cells. In 4 dimensions it is called the 5-cell honeycomb, with Coxete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Root System
In mathematics, a root system is a configuration of vector space, vectors in a Euclidean space satisfying certain geometrical properties. The concept is fundamental in the theory of Lie groups and Lie algebras, especially the classification and representation theory of semisimple Lie algebras. Since Lie groups (and some analogues such as algebraic groups) and Lie algebras have become important in many parts of mathematics during the twentieth century, the apparently special nature of root systems belies the number of areas in which they are applied. Further, the classification scheme for root systems, by Dynkin diagrams, occurs in parts of mathematics with no overt connection to Lie theory (such as singularity theory). Finally, root systems are important for their own sake, as in spectral graph theory. Definitions and examples As a first example, consider the six vectors in 2-dimensional Euclidean space, R2, as shown in the image at the right; call them roots. These vectors Li ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertex Arrangement
In geometry, a vertex arrangement is a set of points in space described by their relative positions. They can be described by their use in polytopes. For example, a ''square vertex arrangement'' is understood to mean four points in a plane, equal distance and angles from a center point. Two polytopes share the same ''vertex arrangement'' if they share the same 0-skeleton. A group of polytopes that shares a vertex arrangement is called an ''army''. Vertex arrangement The same set of vertices can be connected by edges in different ways. For example, the ''pentagon'' and ''pentagram'' have the same ''vertex arrangement'', while the second connects alternate vertices. A ''vertex arrangement'' is often described by the convex hull polytope which contains it. For example, the regular ''pentagram'' can be said to have a (regular) ''pentagonal vertex arrangement''. Infinite tilings can also share common ''vertex arrangements''. For example, this triangular lattice of points ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Compound 3 Triangular Tilings
Compound may refer to: Architecture and built environments * Compound (enclosure), a cluster of buildings having a shared purpose, usually inside a fence or wall ** Compound (fortification), a version of the above fortified with defensive structures * Compound (migrant labour), a hostel for migrant workers such as those historically connected with mines in South Africa * The Compound, an area of Palm Bay, Florida, US * Komboni or compound, a type of slum in Zambia Government and law * Composition (fine), a legal procedure in use after the English Civil War ** Committee for Compounding with Delinquents, an English Civil War institution that allowed Parliament to compound the estates of Royalists * Compounding treason, an offence under the common law of England * Compounding a felony, a previous offense under the common law of England Linguistics * Compound (linguistics), a word that consists of more than one radical element * Compound sentence (linguistics), a type of sentence ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE