Tijdeman's Theorem
   HOME
*





Tijdeman's Theorem
In number theory, Tijdeman's theorem states that there are at most a finite number of consecutive powers. Stated another way, the set of solutions in integers ''x'', ''y'', ''n'', ''m'' of the exponential diophantine equation :y^m = x^n + 1, for exponents ''n'' and ''m'' greater than one, is finite. History The theorem was proven by Dutch number theorist Robert Tijdeman in 1976, making use of Baker's method in transcendental number theory to give an effective upper bound for ''x'',''y'',''m'',''n''. Michel Langevin computed a value of exp exp exp exp 730 for the bound. Tijdeman's theorem provided a strong impetus towards the eventual proof of Catalan's conjecture by Preda Mihăilescu. Mihăilescu's theorem states that there is only one member to the set of consecutive power pairs, namely 9=8+1. Generalized Tijdeman problem That the powers are consecutive is essential to Tijdeman's proof; if we replace the difference of ''1'' by any other difference ''k'' and ask for the numb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."German original: "Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers (for example, rational numbers) or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory are often best understood through the study of Complex analysis, analytical objects (for example, the Riemann zeta function) that encode properties of the integers, primes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Preda Mihăilescu
Preda V. Mihăilescu (born 23 May 1955) is a Romanian mathematician, best known for his proof of the 158-year-old Catalan's conjecture. Biography Born in Bucharest,Stewart 2013 he is the brother of Vintilă Mihăilescu. After leaving Romania in 1973, he settled in Switzerland. He studied mathematics and computer science in Zürich, receiving a PhD from ETH Zürich in 1997. His PhD thesis, titled ''Cyclotomy of rings and primality testing'', was written under the direction of Erwin Engeler and Hendrik Lenstra. For several years, he did research at the University of Paderborn, Germany. Since 2005, he has held a professorship at the University of Göttingen. Major research In 2002, Mihăilescu proved Catalan's conjecture.Bilu et al. 2014. This number-theoretical conjecture, formulated by the French and Belgian mathematician Eugène Charles Catalan in 1844, had stood unresolved for 158 years. Mihăilescu's proof appeared in ''Crelle's Journal ''Crelle's Journal'', or just ''Crel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abc Conjecture
The ''abc'' conjecture (also known as the Oesterlé–Masser conjecture) is a conjecture in number theory that arose out of a discussion of Joseph Oesterlé and David Masser in 1985. It is stated in terms of three positive integers ''a'', ''b'' and ''c'' (hence the name) that are relatively prime and satisfy ''a'' + ''b'' = ''c''. The conjecture essentially states that the product of the distinct prime factors of ''abc'' is usually not much smaller than ''c''. A number of famous conjectures and theorems in number theory would follow immediately from the ''abc'' conjecture or its versions. Mathematician Dorian Goldfeld described the ''abc'' conjecture as "The most important unsolved problem in Diophantine analysis". The ''abc'' conjecture originated as the outcome of attempts by Oesterlé and Masser to understand the Szpiro conjecture about elliptic curves, which involves more geometric structures in its statement than the ''abc'' conjecture. The ''abc'' conjecture was sho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Subbayya Sivasankaranarayana Pillai
Subbayya Sivasankaranarayana Pillai (5 April 1901 – 31 August 1950) was an Indian mathematician specialising in number theory. His contribution to Waring's problem was described in 1950 by K. S. Chandrasekharan as "almost certainly his best piece of work and one of the very best achievements in Indian Mathematics since Ramanujan". Biography Subbayya Sivasankaranarayana Pillai was born to parents Subbayya Pillai and Gomati Ammal. His mother died a year after his birth and his father when Pillai was in his last year at school. Pillai did his intermediate course and B.Sc Mathematics in the Scott Christian College at Nagercoil and managed to earn a B.A. degree from Maharaja's college, Trivandrum. In 1927, Pillai was awarded a research fellowship at the University of Madras to work among professors K. Ananda Rau and Ramaswamy S. Vaidyanathaswamy. He was from 1929 to 1941 at Annamalai University where he worked as a lecturer. It was in Annamalai University that he did his maj ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Crelle's Journal
''Crelle's Journal'', or just ''Crelle'', is the common name for a mathematics journal, the ''Journal für die reine und angewandte Mathematik'' (in English: ''Journal for Pure and Applied Mathematics''). History The journal was founded by August Leopold Crelle (Berlin) in 1826 and edited by him until his death in 1855. It was one of the first major mathematical journals that was not a proceedings of an academy. It has published many notable papers, including works of Niels Henrik Abel, Georg Cantor, Gotthold Eisenstein, Carl Friedrich Gauss and Otto Hesse. It was edited by Carl Wilhelm Borchardt from 1856 to 1880, during which time it was known as ''Borchardt's Journal''. The current editor-in-chief is Rainer Weissauer (Ruprecht-Karls-Universität Heidelberg) Past editors * 1826–1856 August Leopold Crelle * 1856–1880 Carl Wilhelm Borchardt * 1881–1888 Leopold Kronecker, Karl Weierstrass * 1889–1892 Leopold Kronecker * 1892–1902 Lazarus Fuchs * 1903–1928 Kurt Hens ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mihăilescu's Theorem
Catalan's conjecture (or Mihăilescu's theorem) is a theorem in number theory that was conjectured by the mathematician Eugène Charles Catalan in 1844 and proven in 2002 by Preda Mihăilescu at Paderborn University. The integers 23 and 32 are two perfect powers (that is, powers of exponent higher than one) of natural numbers whose values (8 and 9, respectively) are consecutive. The theorem states that this is the ''only'' case of two consecutive perfect powers. That is to say, that History The history of the problem dates back at least to Gersonides, who proved a special case of the conjecture in 1343 where (''x'', ''y'') was restricted to be (2, 3) or (3, 2). The first significant progress after Catalan made his conjecture came in 1850 when Victor-Amédée Lebesgue dealt with the case ''b'' = 2. In 1976, Robert Tijdeman applied Baker's method in transcendence theory to establish a bound on a,b and used existing results bounding ''x'',''y'' in terms of ''a'', ''b'' to give ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bulletin Of The American Mathematical Society
The ''Bulletin of the American Mathematical Society'' is a quarterly mathematical journal published by the American Mathematical Society. Scope It publishes surveys on contemporary research topics, written at a level accessible to non-experts. It also publishes, by invitation only, book reviews and short ''Mathematical Perspectives'' articles. History It began as the ''Bulletin of the New York Mathematical Society'' and underwent a name change when the society became national. The Bulletin's function has changed over the years; its original function was to serve as a research journal for its members. Indexing The Bulletin is indexed in Mathematical Reviews, Science Citation Index, ISI Alerting Services, CompuMath Citation Index, and Current Contents/Physical, Chemical & Earth Sciences. See also *'' Journal of the American Mathematical Society'' *''Memoirs of the American Mathematical Society'' *''Notices of the American Mathematical Society'' *'' Proceedings of the American M ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Catalan's Conjecture
Catalan's conjecture (or Mihăilescu's theorem) is a theorem in number theory that was Conjecture, conjectured by the mathematician Eugène Charles Catalan in 1844 and proven in 2002 by Preda Mihăilescu at Paderborn University. The integers 23 and 32 are two perfect powers (that is, powers of exponent higher than one) of natural numbers whose values (8 and 9, respectively) are consecutive. The theorem states that this is the ''only'' case of two consecutive perfect powers. That is to say, that History The history of the problem dates back at least to Gersonides, who proved a special case of the conjecture in 1343 where (''x'', ''y'') was restricted to be (2, 3) or (3, 2). The first significant progress after Catalan made his conjecture came in 1850 when Victor-Amédée Lebesgue dealt with the case ''b'' = 2. In 1976, Robert Tijdeman applied Baker's method in transcendental number theory, transcendence theory to establish a bound on a,b and used existing results bounding '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exponential Diophantine Equation
In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, such that the only solutions of interest are the integer ones. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents. Diophantine problems have fewer equations than unknowns and involve finding integers that solve simultaneously all equations. As such systems of equations define algebraic curves, algebraic surfaces, or, more generally, algebraic sets, their study is a part of algebraic geometry that is called ''Diophantine geometry''. The word ''Diophantine'' refers to the Hellenistic mathematician of the 3rd century, Diophantus of Alexandria, who made a study of such equations and was one of the first mathematicians to introduce symbolism into algebra. The mathematical study of Diophantine problems that Di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Michel Langevin (mathematician)
Michel "Away" Langevin (born May 30, 1963) is a founding member and drummer of Canadian heavy metal band Voivod. He has been a constant member of the band since its formation in 1982. Langevin is credited with the creation of the mythology of the post-apocalyptic vampire lord Voivod, about which the band originally coalesced, and is largely responsible for its continuing science fiction themes. Langevin is also a graphic design artist. He has created all of Voivod's artwork, as well as the artwork for the Probot album. He is also credited with the design for Non Phixion's album cover artwork. He published an artbook called "Worlds Away: Voivod and The Art of Michel Langevin". Langevin has also cowritten songs for JG Thirlwell's ''Steroid Maximus'' and drummed on Men Without Hats' ''Sideways'' (1991). In 2005, less than six months before the death of Denis "Piggy" D'Amour (Voivod's guitarist), Away and Piggy recorded an album with Canadian artist Lucien Francoeur. Vincent P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Effective Results In Number Theory
For historical reasons and in order to have application to the solution of Diophantine equations, results in number theory have been scrutinised more than in other branches of mathematics to see if their content is effectively computable. Where it is asserted that some list of integers is finite, the question is whether in principle the list could be printed out after a machine computation. Littlewood's result An early example of an ineffective result was J. E. Littlewood's theorem of 1914, that in the prime number theorem the differences of both ψ(''x'') and π(''x'') with their asymptotic estimates change sign infinitely often. In 1933 Stanley Skewes obtained an effective upper bound for the first sign change, now known as Skewes' number. In more detail, writing for a numerical sequence ''f'' (''n''), an ''effective'' result about its changing sign infinitely often would be a theorem including, for every value of ''N'', a value ''M'' > ''N'' such that ''f'' ('' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]