HOME
*





Thurston–Bennequin Number
In the mathematical theory of knots, the Thurston–Bennequin number, or Bennequin number, of a front diagram of a Legendrian knot is defined as the writhe of the diagram minus the number of right cusps. It is named after William Thurston and Daniel Bennequin. The maximum Thurston–Bennequin number over all Legendrian representatives of a knot is a topological knot invariant In the mathematical field of knot theory, a knot invariant is a quantity (in a broad sense) defined for each knot which is the same for equivalent knots. The equivalence is often given by ambient isotopy but can be given by homeomorphism. Some i .... References * * {{knottheory-stub Knot invariants ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Knot Theory
In the mathematical field of topology, knot theory is the study of knot (mathematics), mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, Unknot, the simplest knot being a ring (or "unknot"). In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, \mathbb^3 (in topology, a circle is not bound to the classical geometric concept, but to all of its homeomorphisms). Two mathematical knots are equivalent if one can be transformed into the other via a deformation of \mathbb^3 upon itself (known as an ambient isotopy); these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing through itself. Knots can be described in various ways. Using different description methods, there may be more than one description of the same knot. For example, a common method of descr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Legendrian Knot
In mathematics, a Legendrian knot often refers to a smooth embedding of the circle into which is tangent to the standard contact structure In mathematics, contact geometry is the study of a geometric structure on smooth manifolds given by a hyperplane distribution (differential geometry), distribution in the tangent bundle satisfying a condition called 'complete non-integrability'. ... on It is the lowest-dimensional case of a Legendrian submanifold, which is an embedding of a k-dimensional manifold into a (2k+1)-dimensional contact manifold that is always tangent to the contact hyperplane. Two Legendrian knots are equivalent if they are isotopic through a family of Legendrian knots. There can be inequivalent Legendrian knots that are isotopic as topological knots. Many inequivalent Legendrian knots can be distinguished by considering their Thurston-Bennequin invariants and rotation number, which are together known as the "classical invariants" of Legendrian knots. More s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Writhe
In knot theory, there are several competing notions of the quantity writhe, or \operatorname. In one sense, it is purely a property of an oriented link diagram and assumes integer values. In another sense, it is a quantity that describes the amount of "coiling" of a mathematical knot (or any closed simple curve) in three-dimensional space and assumes real numbers as values. In both cases, writhe is a geometric quantity, meaning that while deforming a curve (or diagram) in such a way that does not change its topology, one may still change its writhe. Writhe of link diagrams In knot theory, the writhe is a property of an oriented link diagram. The writhe is the total number of positive crossings minus the total number of negative crossings. A direction is assigned to the link at a point in each component and this direction is followed all the way around each component. For each crossing one comes across while traveling in this direction, if the strand underneath goes from ri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cusp (singularity)
In mathematics, a cusp, sometimes called spinode in old texts, is a point on a curve where a moving point must reverse direction. A typical example is given in the figure. A cusp is thus a type of singular point of a curve. For a plane curve defined by an analytic, parametric equation :\begin x &= f(t)\\ y &= g(t), \end a cusp is a point where both derivatives of and are zero, and the directional derivative, in the direction of the tangent, changes sign (the direction of the tangent is the direction of the slope \lim (g'(t)/f'(t))). Cusps are ''local singularities'' in the sense that they involve only one value of the parameter , in contrast to self-intersection points that involve more than one value. In some contexts, the condition on the directional derivative may be omitted, although, in this case, the singularity may look like a regular point. For a curve defined by an implicit equation :F(x,y) = 0, which is smooth, cusps are points where the terms of lowest degree ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


William Thurston
William Paul Thurston (October 30, 1946August 21, 2012) was an American mathematician. He was a pioneer in the field of low-dimensional topology and was awarded the Fields Medal in 1982 for his contributions to the study of 3-manifolds. Thurston was a professor of mathematics at Princeton University, University of California, Davis, and Cornell University. He was also a director of the Mathematical Sciences Research Institute. Early life and education William Thurston was born in Washington, D.C. to Margaret Thurston (), a seamstress, and Paul Thurston, an aeronautical engineer. William Thurston suffered from congenital strabismus as a child, causing issues with depth perception. His mother worked with him as a toddler to reconstruct three-dimensional images from two-dimensional ones. He received his bachelor's degree from New College in 1967 as part of its inaugural class. For his undergraduate thesis, he developed an intuitionist foundation for topology. Following this, he r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Daniel Bennequin
Daniel Bennequin (3 January 1952) is a French mathematician, known for the Thurston–Bennequin number (sometimes called the Bennequin number) introduced in his doctoral dissertation. Education and career Bennequin completed his secondary education at Lycée Condorcet and then graduated from the École normale supérieure. He received his habilitation (Doctoral d'Etat) in 1982 from the University of Paris VII under Alain Chenciner with thesis ''Entrelacements et équations de Pfaff''. He was a professor at the University of Strasbourg before becoming a professor at the University of Paris VII (Institut Mathématique de Jussieu). Bennequin's dissertation was a major contribution to contact geometry, in which he gave the first example of an exotic contact structure embedded in Euclidean 3-space. On the basis of their work in the 1980s Bennequin and Yakov Eliashberg might be considered the founders of contact topology. Bennequin also works on motion planning Motion planning, als ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Knot Invariant
In the mathematical field of knot theory, a knot invariant is a quantity (in a broad sense) defined for each knot which is the same for equivalent knots. The equivalence is often given by ambient isotopy but can be given by homeomorphism. Some invariants are indeed numbers (algebraic), but invariants can range from the simple, such as a yes/no answer, to those as complex as a homology theory (for example, "a ''knot invariant'' is a rule that assigns to any knot a quantity such that if and are equivalent then ."). Research on invariants is not only motivated by the basic problem of distinguishing one knot from another but also to understand fundamental properties of knots and their relations to other branches of mathematics. Knot invariants are thus used in knot classification,Purcell, Jessica (2020). ''Hyperbolic Knot Theory'', p.7. American Mathematical Society. "A ''knot invariant'' is a function from the set of knots to some other set whose value depends only on the equiva ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lee Rudolph
Lee may refer to: Name Given name * Lee (given name), a given name in English Surname * Chinese surnames romanized as Li or Lee: ** Li (surname 李) or Lee (Hanzi ), a common Chinese surname ** Li (surname 利) or Lee (Hanzi ), a Chinese surname *Lý (Vietnamese surname) or Lí (李), a common Vietnamese surname * Lee (Korean surname) or Rhee or Yi (Hanja , Hangul or ), a common Korean surname * Lee (English surname), a common English surname * List of people with surname Lee **List of people with surname Li ** List of people with the Korean family name Lee Geography United Kingdom * Lee, Devon * Lee, Hampshire * Lee, London * Lee, Mull, a location in Argyll and Bute * Lee, Northumberland, a location * Lee, Shropshire, a location * Lee-on-the-Solent, Hampshire * Lee District (Metropolis) * The Lee, Buckinghamshire, parish and village name, formally known as Lee * River Lee - alternative name for River Lea United States * Lee, California * Lee, Florida * Lee, Illinoi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proceedings Of The American Mathematical Society
''Proceedings of the American Mathematical Society'' is a monthly peer-reviewed scientific journal of mathematics published by the American Mathematical Society. As a requirement, all articles must be at most 15 printed pages. According to the ''Journal Citation Reports'', the journal has a 2018 impact factor of 0.813. Scope ''Proceedings of the American Mathematical Society'' publishes articles from all areas of pure and applied mathematics, including topology, geometry, analysis, algebra, number theory, combinatorics, logic, probability and statistics. Abstracting and indexing This journal is indexed in the following databases:Indexing and archiving notes
2011. American Mathematical Society. *