The Secrets Of Triangles
''The Secrets of Triangles: A Mathematical Journey'' is a popular mathematics book on the geometry of triangles. It was written by Alfred S. Posamentier and , and published in 2012 by Prometheus Books. Topics The book consists of ten chapters, with the first six concentrating on triangle centers while the final four cover more diverse topics including the area of triangles, inequalities involving triangles, straightedge and compass constructions, and fractals. Beyond the classical triangle centers (the circumcenter, incenter, orthocenter, and centroid) the book covers other centers including the Brocard points, Fermat point, Gergonne point, and other geometric objects associated with triangle centers such as the Euler line, Simson line, and nine-point circle. The chapter on areas includes both trigonometric formulas and Heron's formula for computing the area of a triangle from its side lengths, and the chapter on inequalities includes the Erdős–Mordell inequality on sums of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
The Secrets Of Triangles
''The Secrets of Triangles: A Mathematical Journey'' is a popular mathematics book on the geometry of triangles. It was written by Alfred S. Posamentier and , and published in 2012 by Prometheus Books. Topics The book consists of ten chapters, with the first six concentrating on triangle centers while the final four cover more diverse topics including the area of triangles, inequalities involving triangles, straightedge and compass constructions, and fractals. Beyond the classical triangle centers (the circumcenter, incenter, orthocenter, and centroid) the book covers other centers including the Brocard points, Fermat point, Gergonne point, and other geometric objects associated with triangle centers such as the Euler line, Simson line, and nine-point circle. The chapter on areas includes both trigonometric formulas and Heron's formula for computing the area of a triangle from its side lengths, and the chapter on inequalities includes the Erdős–Mordell inequality on sums of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gergonne Point
In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. An excircle or escribed circle of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides. The center of the incircle, called the incenter, can be found as the intersection of the three internal angle bisectors. The center of an excircle is the intersection of the internal bisector of one angle (at vertex , for example) and the external bisectors of the other two. The center of this excircle is called the excenter relative to the vertex , or the excenter of . Because the internal bisector of an angle is perpendicular to its external bisector, it follows that the center of the in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
MathSciNet
MathSciNet is a searchable online bibliographic database created by the American Mathematical Society in 1996. It contains all of the contents of the journal ''Mathematical Reviews'' (MR) since 1940 along with an extensive author database, links to other MR entries, citations, full journal entries, and links to original articles. It contains almost 3.6 million items and over 2.3 million links to original articles. Along with its parent publication ''Mathematical Reviews'', MathSciNet has become an essential tool for researchers in the mathematical sciences. Access to the database is by subscription only and is not generally available to individual researchers who are not affiliated with a larger subscribing institution. For the first 40 years of its existence, traditional typesetting was used to produce the Mathematical Reviews journal. Starting in 1980 bibliographic information and the reviews themselves were produced in both print and electronic form. This formed the basis of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
The Mathematics Teacher
Founded in 1920, The National Council of Teachers of Mathematics (NCTM) is a professional organization for schoolteachers of mathematics in the United States. One of its goals is to improve the standards of mathematics in education. NCTM holds annual national and regional conferences for teachers and publishes five journals. Journals NCTM publishes five official journals. All are available in print and online versions. ''Teaching Children Mathematics'' supports improvement of pre-K–6 mathematics education by serving as a resource for teachers so as to provide more and better mathematics for all students. It is a forum for the exchange of mathematics idea, activities, and pedagogical strategies, and or sharing and interpreting research. ''Mathematics Teaching in the Middle School'' supports the improvement of grade 5–9 mathematics education by serving as a resource for practicing and prospective teachers, as well as supervisors and teacher educators. It is a forum for the e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
99 Points Of Intersection
''99 Points of Intersection: Examples—Pictures—Proofs'' is a book on constructions in Euclidean plane geometry in which three or more lines or curves meet in a single point of intersection. This book was originally written in German by Hans Walser as ''99 Schnittpunkte'' (Eagle / Ed. am Gutenbergplatz, 2004), translated into English by Peter Hilton and Jean Pedersen, and published by the Mathematical Association of America in 2006 in their MAA Spectrum series (). Topics and organization The book is organized into three sections. The first section provides introductory material, describing different mathematical situations in which multiple curves might meet, and providing different possible explanations for this phenomenon, including symmetry, geometric transformations, and membership of the curves in a pencil of curves. The second section shows the 99 points of intersection of the title. Each is given on its own page, as a large figure with three smaller figures showing its co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Encyclopedia Of Triangle Centers
The Encyclopedia of Triangle Centers (ETC) is an online list of thousands of points or "centers" associated with the geometry of a triangle. It is maintained by Clark Kimberling, Professor of Mathematics at the University of Evansville. , the list identifies 52,440 triangle centers. Each point in the list is identified by an index number of the form ''X''(''n'')—for example, ''X''(1) is the incenter. The information recorded about each point includes its trilinear and barycentric coordinates and its relation to lines joining other identified points. Links to The Geometer's Sketchpad diagrams are provided for key points. The Encyclopedia also includes a glossary of terms and definitions. Each point in the list is assigned a unique name. In cases where no particular name arises from geometrical or historical considerations, the name of a star is used instead. For example, the 770th point in the list is named ''point Acamar''. The first 10 points listed in the Encyclopedia ar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Koch Snowflake
The Koch snowflake (also known as the Koch curve, Koch star, or Koch island) is a fractal curve and one of the earliest fractals to have been described. It is based on the Koch curve, which appeared in a 1904 paper titled "On a Continuous Curve Without Tangents, Constructible from Elementary Geometry" by the Swedish mathematician Helge von Koch. The Koch snowflake can be built up iteratively, in a sequence of stages. The first stage is an equilateral triangle, and each successive stage is formed by adding outward bends to each side of the previous stage, making smaller equilateral triangles. The areas enclosed by the successive stages in the construction of the snowflake converge to \tfrac times the area of the original triangle, while the perimeters of the successive stages increase without bound. Consequently, the snowflake encloses a finite area, but has an infinite perimeter. Construction The Koch snowflake can be constructed by starting with an equilateral triangle, t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sierpiński Triangle
The Sierpiński triangle (sometimes spelled ''Sierpinski''), also called the Sierpiński gasket or Sierpiński sieve, is a fractal curve, fractal attractive fixed set with the overall shape of an equilateral triangle, subdivided recursion, recursively into smaller equilateral triangles. Originally constructed as a curve, this is one of the basic examples of self-similarity, self-similar sets—that is, it is a mathematically generated pattern that is reproducible at any magnification or reduction. It is named after the Poland, Polish mathematician Wacław Sierpiński, but appeared as a decorative pattern many centuries before the work of Sierpiński. Constructions There are many different ways of constructing the Sierpinski triangle. Removing triangles The Sierpinski triangle may be constructed from an equilateral triangle by repeated removal of triangular subsets: # Start with an equilateral triangle. # Subdivide it into four smaller congruent equilateral triangles and re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Weitzenböck's Inequality
In mathematics, Weitzenböck's inequality, named after Roland Weitzenböck, states that for a triangle of side lengths a, b, c, and area \Delta, the following inequality holds: : a^2 + b^2 + c^2 \geq 4\sqrt\, \Delta. Equality occurs if and only if the triangle is equilateral. Pedoe's inequality is a generalization of Weitzenböck's inequality. The Hadwiger–Finsler inequality is a strengthened version of Weitzenböck's inequality. Geometric interpretation and proof Rewriting the inequality above allows for a more concrete geometric interpretation, which in turn provides an immediate proof. : \fraca^2 + \fracb^2 + \fracc^2 \geq 3\, \Delta. Now the summands on the left side are the areas of equilateral triangles erected over the sides of the original triangle and hence the inequation states that the sum of areas of the equilateral triangles is always greater than or equal to threefold the area of the original triangle. : \Delta_a + \Delta_b + \Delta_c \geq 3\, \Delta. Th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Erdős–Mordell Inequality
In Euclidean geometry, the Erdős–Mordell inequality states that for any triangle ''ABC'' and point ''P'' inside ''ABC'', the sum of the distances from ''P'' to the sides is less than or equal to half of the sum of the distances from ''P'' to the vertices. It is named after Paul Erdős and Louis Mordell. posed the problem of proving the inequality; a proof was provided two years later by . This solution was however not very elementary. Subsequent simpler proofs were then found by , , and . Barrow's inequality is a strengthened version of the Erdős–Mordell inequality in which the distances from ''P'' to the sides are replaced by the distances from ''P'' to the points where the angle bisectors of ∠''APB'', ∠''BPC'', and ∠''CPA'' cross the sides. Although the replaced distances are longer, their sum is still less than or equal to half the sum of the distances to the vertices. Statement Let P be an arbitrary point P inside a given triangle ABC, and let PL, PM, and PN be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Heron's Formula
In geometry, Heron's formula (or Hero's formula) gives the area of a triangle in terms of the three side lengths , , . If s = \tfrac12(a + b + c) is the semiperimeter of the triangle, the area is, :A = \sqrt. It is named after first-century engineer Heron of Alexandria (or Hero) who proved it in his work ''Metrica'', though it was probably known centuries earlier. Example Let be the triangle with sides , and . This triangle’s semiperimeter is :s=\frac=\frac=16 and so the area is : \begin A &= \sqrt = \sqrt\\ &= \sqrt = \sqrt = 24. \end In this example, the side lengths and area are integers, making it a Heronian triangle. However, Heron's formula works equally well in cases where one or more of the side lengths are not integers. Alternate expressions Heron's formula can also be written in terms of just the side lengths instead of using the semiperimeter, in several ways, :\begin A &=\tfrac\sqrt \\ mu&=\tfrac\sqrt \\ mu&=\tfrac\sqrt \\ mu&=\tfrac\sqrt \\ mu&=\tfra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Trigonometry
Trigonometry () is a branch of mathematics that studies relationships between side lengths and angles of triangles. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. The Greeks focused on the calculation of chords, while mathematicians in India created the earliest-known tables of values for trigonometric ratios (also called trigonometric functions) such as sine. Throughout history, trigonometry has been applied in areas such as geodesy, surveying, celestial mechanics, and navigation. Trigonometry is known for its many identities. These trigonometric identities are commonly used for rewriting trigonometrical expressions with the aim to simplify an expression, to find a more useful form of an expression, or to solve an equation. History Sumerian astronomers studied angle measure, using a division of circles into 360 degrees. They, and later the Babylonians, studied the ratios of the sides of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |