Symmetric Successive Over-relaxation
   HOME
*





Symmetric Successive Over-relaxation
In applied mathematics, symmetric successive over-relaxation (SSOR), is a preconditioner. If the original matrix can be split into diagonal, lower and upper triangular as A=D+L+L^\mathsf then the SSOR preconditioner matrix is defined as M=(D+L) D^ (D+L)^\mathsf It can also be parametrised by \omega as follows.SSOR preconditioning
at M(\omega)= \left ( D + L \right ) D^ \left ( D + L\right)^\mathsf


See also

*

picture info

Preconditioner
In mathematics, preconditioning is the application of a transformation, called the preconditioner, that conditions a given problem into a form that is more suitable for numerical solving methods. Preconditioning is typically related to reducing a condition number of the problem. The preconditioned problem is then usually solved by an iterative method. Preconditioning for linear systems In linear algebra and numerical analysis, a preconditioner P of a matrix A is a matrix such that P^A has a smaller condition number than A. It is also common to call T=P^ the preconditioner, rather than P, since P itself is rarely explicitly available. In modern preconditioning, the application of T=P^, i.e., multiplication of a column vector, or a block of column vectors, by T=P^, is commonly performed in a matrix-free fashion, i.e., where neither P, nor T=P^ (and often not even A) are explicitly available in a matrix form. Preconditioners are useful in iterative methods to solve a line ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matrix Splitting
In the mathematical discipline of numerical linear algebra, a matrix splitting is an expression which represents a given matrix as a sum or difference of matrices. Many iterative methods (for example, for systems of differential equations) depend upon the direct solution of matrix equations involving matrices more general than tridiagonal matrices. These matrix equations can often be solved directly and efficiently when written as a matrix splitting. The technique was devised by Richard S. Varga in 1960. Regular splittings We seek to solve the matrix equation where A is a given ''n'' × ''n'' non-singular matrix, and k is a given column vector with ''n'' components. We split the matrix A into where B and C are ''n'' × ''n'' matrices. If, for an arbitrary ''n'' × ''n'' matrix M, M has nonnegative entries, we write M ≥ 0. If M has only positive entries, we write M > 0. Similarly, if the matrix M1 − M2 has nonnegative entries, we write M1 ≥ M2. Definit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Netlib
Netlib is a repository of software for scientific computing maintained by AT&T, Bell Laboratories, the University of Tennessee and Oak Ridge National Laboratory. Netlib comprises many separate programs and libraries. Most of the code is written in C and Fortran, with some programs in other languages. History The project began with email distribution on UUCP, ARPANET and CSNET in the 1980s. The code base of Netlib was written at a time when computer software was not yet considered merchandise. Therefore, no license terms or terms of use are stated for many programs. Before the Berne Convention Implementation Act of 1988 (and the earlier Copyright Act of 1976) works without an explicit copyright notice were public-domain software. Also, most of the Netlib code is work of US government employees and therefore in the public domain.
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Successive Over-relaxation
In numerical linear algebra, the method of successive over-relaxation (SOR) is a variant of the Gauss–Seidel method for solving a linear system of equations, resulting in faster convergence. A similar method can be used for any slowly converging iterative process. It was devised simultaneously by David M. Young Jr. and by Stanley P. Frankel in 1950 for the purpose of automatically solving linear systems on digital computers. Over-relaxation methods had been used before the work of Young and Frankel. An example is the method of Lewis Fry Richardson, and the methods developed by R. V. Southwell. However, these methods were designed for computation by human calculators, requiring some expertise to ensure convergence to the solution which made them inapplicable for programming on digital computers. These aspects are discussed in the thesis of David M. Young Jr. Formulation Given a square system of ''n'' linear equations with unknown x: :A\mathbf x = \mathbf b where: :A=\begin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]