Susskind–Glogower Operator
   HOME
*





Susskind–Glogower Operator
The Susskind–Glogower operator, first proposed by Leonard Susskind and J. Glogower, refers to the operator where the phase is introduced as an approximate polar decomposition of the creation and annihilation operators. It is defined as : V=\fraca, and its adjoint : V^=a^\frac. Their commutation relation is : ,V^, 0\rangle\langle 0, , where , 0\rangle is the vacuum state of the harmonic oscillator. They may be regarded as a (exponential of) phase operator because : Va^a V^=a^a+1, where a^a is the number operator. So the exponential of the phase operator displaces the number operator in the same fashion as the momentum operator In quantum mechanics, the momentum operator is the operator (physics), operator associated with the momentum (physics), linear momentum. The momentum operator is, in the position representation, an example of a differential operator. For the case o ... acts as the generator of translations in quantum mechanics: \exp\left(i\frac\right)\hat\exp\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Leonard Susskind
Leonard Susskind (; born June 16, 1940)his 60th birthday was celebrated with a special symposium at Stanford University.in Geoffrey West's introduction, he gives Suskind's current age as 74 and says his birthday was recent. is an American physicist, who is a professor of theoretical physics at Stanford University, and founding director of the Stanford Institute for Theoretical Physics. His research interests include string theory, quantum field theory, quantum statistical mechanics and quantum cosmology. He is a member of the US National Academy of Sciences, and the American Academy of Arts and Sciences, an associate member of the faculty of Canada's Perimeter Institute for Theoretical Physics, and a distinguished professor of the Korea Institute for Advanced Study. Susskind is widely regarded as one of the fathers of string theory. He was the first to give a precise string-theoretic interpretation of the holographic principle in 1995 and the first to introduce the idea of the stri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Creation And Annihilation Operators
Creation operators and annihilation operators are mathematical operators that have widespread applications in quantum mechanics, notably in the study of quantum harmonic oscillators and many-particle systems. An annihilation operator (usually denoted \hat) lowers the number of particles in a given state by one. A creation operator (usually denoted \hat^\dagger) increases the number of particles in a given state by one, and it is the adjoint of the annihilation operator. In many subfields of physics and chemistry, the use of these operators instead of wavefunctions is known as second quantization. They were introduced by Paul Dirac. Creation and annihilation operators can act on states of various types of particles. For example, in quantum chemistry and many-body theory the creation and annihilation operators often act on electron states. They can also refer specifically to the ladder operators for the quantum harmonic oscillator. In the latter case, the raising operator is in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Commutation Relation
In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, and , of a group , is the element : . This element is equal to the group's identity if and only if and commute (from the definition , being equal to the identity if and only if ). The set of all commutators of a group is not in general closed under the group operation, but the subgroup of ''G'' generated by all commutators is closed and is called the ''derived group'' or the ''commutator subgroup'' of ''G''. Commutators are used to define nilpotent and solvable groups and the largest abelian quotient group. The definition of the commutator above is used throughout this article, but many other group theorists define the commutator as :. Identities (group theory) Commutator identities are an important tool in group theory. The expr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Harmonic Oscillator
In classical mechanics, a harmonic oscillator is a system that, when displaced from its Mechanical equilibrium, equilibrium position, experiences a restoring force ''F'' Proportionality (mathematics), proportional to the displacement ''x'': \vec F = -k \vec x, where ''k'' is a positive coefficient, constant. If ''F'' is the only force acting on the system, the system is called a simple harmonic oscillator, and it undergoes simple harmonic motion: sinusoidal oscillations about the equilibrium point, with a constant amplitude and a constant frequency (which does not depend on the amplitude). If a frictional force (Damping ratio, damping) proportional to the velocity is also present, the harmonic oscillator is described as a damped oscillator. Depending on the friction coefficient, the system can: * Oscillate with a frequency lower than in the Damping ratio, undamped case, and an amplitude decreasing with time (Damping ratio, underdamped oscillator). * Decay to the equilibrium p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Phase Operator
Phase or phases may refer to: Science *State of matter, or phase, one of the distinct forms in which matter can exist *Phase (matter), a region of space throughout which all physical properties are essentially uniform *Phase space, a mathematical space in which each possible state of a physical system is represented by a point — this equilibrium point is also referred to as a "microscopic state" **Phase space formulation, a formulation of quantum mechanics in phase space *Phase (waves), the position of a point in time (an instant) on a waveform cycle **Instantaneous phase, generalization for both cyclic and non-cyclic phenomena * AC phase, the phase offset between alternating current electric power in multiple conducting wires **Single-phase electric power, distribution of AC electric power in a system where the voltages of the supply vary in unison **Three-phase electric power, a common method of AC electric power generation, transmission, and distribution *Phase problem, the l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Number Operator
In quantum mechanics, for systems where the total number of particles may not be preserved, the number operator is the observable that counts the number of particles. The number operator acts on Fock space. Let :, \Psi\rangle_\nu=, \phi_1,\phi_2,\cdots,\phi_n\rangle_\nu be a Fock state, composed of single-particle states , \phi_i\rangle drawn from a basis of the underlying Hilbert space of the Fock space. Given the corresponding creation and annihilation operators a^(\phi_i) and a(\phi_i)\, we define the number operator by :\hat \ \stackrel\ a^(\phi_i)a(\phi_i) and we have :\hat, \Psi\rangle_\nu=N_i, \Psi\rangle_\nu where N_i is the number of particles in state , \phi_i\rangle. The above equality can be proven by noting that :\begin a(\phi_i) , \phi_1,\phi_2,\cdots,\phi_,\phi_i,\phi_,\cdots,\phi_n\rangle_\nu &=& \sqrt , \phi_1,\phi_2,\cdots,\phi_,\phi_,\cdots,\phi_n\rangle_\nu \\ a^(\phi_i) , \phi_1,\phi_2,\cdots,\phi_,\phi_,\cdots,\phi_n\rangle_\nu &=& \sqrt , \phi_1,\phi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Momentum Operator
In quantum mechanics, the momentum operator is the operator (physics), operator associated with the momentum (physics), linear momentum. The momentum operator is, in the position representation, an example of a differential operator. For the case of one particle in one spatial dimension, the definition is: \hat = - i \hbar \frac where is Planck's reduced constant, the imaginary unit, is the spatial coordinate, and a partial derivative (denoted by \partial/\partial x) is used instead of a total derivative () since the wave function is also a function of time. The "hat" indicates an operator. The "application" of the operator on a differentiable wave function is as follows: \hat\psi = - i \hbar \frac In a basis of Hilbert space consisting of momentum eigenstates expressed in the momentum representation, the action of the operator is simply multiplication by , i.e. it is a multiplication operator, just as the position operator is a multiplication operator in the position represen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Translation Operator (quantum Mechanics)
In quantum mechanics, a translation operator is defined as an operator (physics), operator which shifts particles and field (physics), fields by a certain amount in a certain direction. More specifically, for any displacement vector \mathbf x, there is a corresponding translation operator \hat(\mathbf) that shifts particles and fields by the amount \mathbf x. For example, if \hat(\mathbf) acts on a particle located at position \mathbf r, the result is a particle at position \mathbf+\mathbf. Translation operators are unitary operator, unitary. Translation operators are closely related to the momentum operator; for example, a translation operator that moves by an infinitesimal amount in the y direction has a simple relationship to the y-component of the momentum operator. Because of this relationship, conservation of momentum holds when the translation operators commute with the Hamiltonian, i.e. when laws of physics are translation-invariant. This is an example of Noether's theorem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Non-linear Coherent States
Coherent states are quasi-classical states that may be defined in different ways, for instance as eigenstates of the annihilation operator : a, \alpha\rangle=\alpha, \alpha\rangle, or as a displacement from the vacuum : , \alpha\rangle=D(\alpha), 0\rangle, where D(\alpha)=\exp(\alpha a^-\alpha^* a) is the Sudarshan- Glauber displacement operator. One may think of a non-linear coherent state by generalizing the annihilation operator: : A=af(a^a), and then using any of the above definitions by exchanging a by A . The above definition is also known as an f-deformed annihilation operator Creation operators and annihilation operators are mathematical operators that have widespread applications in quantum mechanics, notably in the study of quantum harmonic oscillators and many-particle systems. An annihilation operator (usually ....V. I. Man'ko, G. Marmo, F. Zaccaria and E. C. G. Sudarshan, Proceedings of the IV Wigner Symposium, eds. N. Atakishiyev, T. Seligman and K. B. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]