Super Kamiokande
   HOME
*



picture info

Super Kamiokande
Super-Kamiokande (abbreviation of Super-Kamioka Neutrino Detection Experiment, also abbreviated to Super-K or SK; ja, スーパーカミオカンデ) is a Neutrino detector, neutrino observatory located Kamioka Observatory, under Mount Ikeno near the city of Hida, Gifu, Hida, Gifu Prefecture, Japan. It is located underground in the Mozumi Mining, Mine in Hida's Kamioka area. The observatory was designed to detect high-energy neutrinos, to search for proton decay, study solar neutrino, solar and Neutrino#Atmospheric neutrinos, atmospheric neutrinos, and keep watch for supernovae in the Milky Way Galaxy. It consists of a cylindrical stainless steel tank about in height and diameter holding 50,000 metric tons (55,000 US tons) of ultrapure water. Mounted on an inside superstructure are about 13,000 photomultiplier tubes that detect light from Cherenkov radiation. A neutrino interaction with the electrons or nuclei of water can produce an electron or positron that moves faster t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neutrino Detector
A neutrino detector is a physics apparatus which is designed to study neutrinos. Because neutrinos only Weak interaction, weakly interact with other particles of matter, neutrino detectors must be very large to detect a significant number of neutrinos. Neutrino detectors are often built underground, to isolate the detector from cosmic rays and other background radiation. The field of neutrino astronomy is still very much in its infancy – the only confirmed extraterrestrial sources are the Sun and the SN 1987A, supernova 1987A in the nearby Large Magellanic Cloud. Another likely source (three standard deviations) is the blazar TXS 0506+056 about 3.7 billion light years away. Neutrino observatories will "give astronomers fresh eyes with which to study the universe". Various detection methods have been used. Super Kamiokande is a large volume of water surrounded by phototubes that watch for the Cherenkov radiation emitted when an incoming neutrino creates an electron or muon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sonic Boom
A sonic boom is a sound associated with shock waves created when an object travels through the air faster than the speed of sound. Sonic booms generate enormous amounts of sound energy, sounding similar to an explosion or a thunderclap to the human ear. A decibel is the primary unit measurement of sound. "A thunderclap is incredibly loud, producing levels between 100 and 120 dBA (Decibel, decibels A)- the equivalent of standing near a jet during take-off." The crack of a supersonic bullet passing overhead or the crack of a bullwhip are examples of a sonic boom in miniature. Sonic booms due to large supersonic aircraft can be particularly loud and startling, tend to awaken people, and may cause minor damage to some structures. This led to prohibition of routine supersonic flight overland. Although they cannot be completely prevented, research suggests that with careful shaping of the vehicle, the nuisance due to the sonic booms may be reduced to the point that overland super ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

SN 1987A
SN 1987A was a type II supernova in the Large Magellanic Cloud, a dwarf satellite galaxy of the Milky Way. It occurred approximately from Earth and was the closest observed supernova since Kepler's Supernova. 1987A's light reached Earth on February 23, 1987, and as the earliest supernova discovered that year, was labeled "1987A". Its brightness peaked in May, with an apparent magnitude of about 3. It was the first supernova that modern astronomers were able to study in great detail, and its observations have provided much insight into core-collapse supernovae. SN 1987A provided the first opportunity to confirm by direct observation the radioactive source of the energy for visible light emissions, by detecting predicted gamma-ray line radiation from two of its abundant radioactive nuclei. This proved the radioactive nature of the long-duration post-explosion glow of supernovae. For over thirty years, the expected collapsed neutron star could not be found, but in 2019, indirect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Supernova Neutrinos
Supernova neutrinos are weakly interactive elementary particles produced during a core-collapse supernova explosion. A massive star collapses at the end of its life, emitting of the order of 1058 neutrinos and antineutrinos in all lepton flavors. The luminosity of different neutrino and antineutrino species are roughly the same. They carry away about 99% of the gravitational energy of the dying star as a burst lasting tens of seconds. The typical supernova neutrino energies are 10–20 MeV. Supernovae are considered the strongest and most frequent source of cosmic neutrinos in the MeV energy range. Since neutrinos are generated in the core of a supernova, they play a crucial role in the star's collapse and explosion. Neutrino heating is believed to be a critical factor in supernova explosions. Therefore, observation of neutrinos from supernova provides detailed information about core collapse and the explosion mechanism. Further, neutrinos undergoing collective flavor conv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Chemical Tank
Chemical tanks are storage containers for chemicals widely used within the chemical industry. They come in a variety of sizes and shapes, and are used for static storage, processing, mixing, and transport of both raw materials and finished chemical products. Definition A chemical tank-vessel is of necessity designed for a specific chemical, as all chemicals have variable corrosion potentials there are no, one size fits all. The chemical and application parameters should design tank-vessel, the following is a "tip of the iceberg" view of what goes into defining a Chemical storage tank. Design A. The Chemical tank design is critical to a properly functioning long term chemical storage vessel / tank. Maintaining control of the chemical, is all science and consists of selecting the appropriate tank materials, chemical resistance being the number one priority. B. The Chemical tank will of necessity be made of a material as resistant to the chemical being stored as design and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

University Of Tokyo
, abbreviated as or UTokyo, is a public research university located in Bunkyō, Tokyo, Japan. Established in 1877, the university was the first Imperial University and is currently a Top Type university of the Top Global University Project by the Japanese government. UTokyo has 10 faculties, 15 graduate schools and enrolls about 30,000 students, about 4,200 of whom are international students. In particular, the number of privately funded international students, who account for more than 80%, has increased 1.75 times in the 10 years since 2010, and the university is focusing on supporting international students. Its five campuses are in Hongō, Komaba, Kashiwa, Shirokane and Nakano. It is considered to be the most selective and prestigious university in Japan. As of 2021, University of Tokyo's alumni, faculty members and researchers include seventeen prime ministers, 18 Nobel Prize laureates, four Pritzker Prize laureates, five astronauts, and a Fields Medalist. Hist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Institute For Cosmic Ray Research
The Institute for Cosmic Ray Research (ICRR) of the University of Tokyo (東京大学宇宙線研究所 ''Tōkyōdaigaku Uchūsen Kenkyūsho'') was established in 1976 for the study of cosmic rays. The gravitational wave studies group is currently constructing the detector KAGRA located at the Kamioka Observatory. Facilities * Kashiwa Campus at the University of Tokyo * Akeno Observatory * Kamioka Observatory * Norikura Observatory Current projects *Super-Kamiokande - Detection of neutrinos and search for proton decays in a large water tank *Tibet - Search for point sources of VHE cosmic gamma rays at Tibet heights *Telescope Array Project - Aiming at highest energy cosmic ray physics by detecting weak light from atmosphere"New Ground-Based Arrays to Probe Cosmic Powerhouses" By Dennis Normile Science 30 April 1999: 734-735 *Gravitational Wave Group - Constructing the gravitational wave detector KAGRA The Kamioka Gravitational Wave Detector (KAGRA), is a large interferometer de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Muon
A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of , but with a much greater mass. It is classified as a lepton. As with other leptons, the muon is not thought to be composed of any simpler particles; that is, it is a fundamental particle. The muon is an unstable subatomic particle with a mean lifetime of , much longer than many other subatomic particles. As with the decay of the non-elementary neutron (with a lifetime around 15 minutes), muon decay is slow (by subatomic standards) because the decay is mediated only by the weak interaction (rather than the more powerful strong interaction or electromagnetic interaction), and because the mass difference between the muon and the set of its decay products is small, providing few kinetic degrees of freedom for decay. Muon decay almost always produces at least three particles, which must include an electron o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Special Relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws of physics are invariant (that is, identical) in all inertial frames of reference (that is, frames of reference with no acceleration). # The speed of light in vacuum is the same for all observers, regardless of the motion of the light source or the observer. Origins and significance Special relativity was originally proposed by Albert Einstein in a paper published on 26 September 1905 titled "On the Electrodynamics of Moving Bodies".Albert Einstein (1905)''Zur Elektrodynamik bewegter Körper'', ''Annalen der Physik'' 17: 891; English translatioOn the Electrodynamics of Moving Bodiesby George Barker Jeffery and Wilfrid Perrett (1923); Another English translation On the Electrodynamics of Moving Bodies by Megh Nad Saha (1920). The incompa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scattering
Scattering is a term used in physics to describe a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including particles and radiation) in the medium through which they pass. In conventional use, this also includes deviation of reflected radiation from the angle predicted by the law of reflection. Reflections of radiation that undergo scattering are often called ''diffuse reflections'' and unscattered reflections are called ''specular'' (mirror-like) reflections. Originally, the term was confined to light scattering (going back at least as far as Isaac Newton in the 17th century). As more "ray"-like phenomena were discovered, the idea of scattering was extended to them, so that William Herschel could refer to the scattering of "heat rays" (not then recognized as electromagnetic in nature) in 1800. John Tyndall, a pioneer in light scattering researc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tyvek
Tyvek () is a brand of synthetic flashspun high-density polyethylene fibers. The name "Tyvek" is a registered trademark of the American multinational chemical company DuPont, which discovered and commercialized Tyvek in the late 1950s and early 1960s. Tyvek's properties - such as being difficult to tear but easily cut, and waterproof against liquids whilst allowing water vapor to penetrate - have led to it being used in a variety of applications. Tyvek is often used as housewrap, a synthetic material used to protect buildings during construction, or as personal protective equipment (PPE). History Tyvek is a nonwoven product consisting of spun bond olefin fiber. It was first discovered in 1955 by a researcher for the DuPont textile company working in an experimental lab, who noticed a type of white fluff coming out of a pipe. That fluff was a form of polyethylene, which DuPont requested a patent for within a year of the discovery. After technologies improved during the next few ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]