Strong Chromatic Number
   HOME
*





Strong Chromatic Number
In graph theory, a strong coloring, with respect to a partition of the vertices into (disjoint) subsets of equal sizes, is a (proper) vertex coloring in which every color appears exactly once in every part. A graph is strongly ''k''-colorable if, for each partition of the vertices into sets of size ''k'', it admits a strong coloring. When the order of the graph ''G'' is not divisible by ''k'', we add isolated vertices to ''G'' just enough to make the order of the new graph ' divisible by ''k''. In that case, a strong coloring of ' minus the previously added isolated vertices is considered a strong coloring of ''G''. The strong chromatic number sχ(''G'') of a graph ''G'' is the least ''k'' such that ''G'' is strongly ''k''-colorable. A graph is strongly ''k''-chromatic if it has strong chromatic number ''k''. Some properties of sχ(''G''): # sχ(''G'') > Δ(''G''). # sχ(''G'') ≤ 3 Δ(''G'') − 1. # Asymptotically, sχ(''G'') ≤ 11 Δ(''G'') / 4 + o(Δ(''G'')). Here, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strong Coloring Sample
Strong may refer to: Education * The Strong, an educational institution in Rochester, New York, United States * Strong Hall (Lawrence, Kansas), an administrative hall of the University of Kansas * Strong School, New Haven, Connecticut, United States, an overflow school for district kindergartners and first graders Music Albums * ''Strong'' (Anette Olzon album), 2021 * ''Strong'' (Arrested Development album), 2010 * ''Strong'' (Michelle Wright album), 2013 * ''Strong'' (Thomas Anders album), 2010 * ''Strong'' (Tracy Lawrence album), 2004 * ''Strong'', a 2000 album by Clare Quilty Songs * "Strong" (London Grammar song), 2013 * "Strong" (One Direction song), 2013 * "Strong" (Robbie Williams song), 1998 * "Strong", a song by After Forever from '' Remagine'' * "Strong", a song by Audio Adrenaline from ''Worldwide'' * "Strong", a song by LeAnn Rimes from ''Whatever We Wanna'' * "Strong", a song by London Grammar from ''If You Wait'' * "Strong", a song by Will Hoge from '' Nev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Coloring
In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color. Vertex coloring is often used to introduce graph coloring problems, since other coloring problems can be transformed into a vertex coloring instance. For example, an edge coloring of a graph is just a vertex coloring of its line graph, and a face coloring of a plane graph is just a vertex coloring of its dual. However, non-vertex coloring problems are often stated and studied as-is. This is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Glossary Of Graph Theory
This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges. Symbols A B C D E F G H I K L M N O ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Israel Journal Of Mathematics
'' Israel Journal of Mathematics'' is a peer-reviewed mathematics journal published by the Hebrew University of Jerusalem (Magnes Press). Founded in 1963, as a continuation of the ''Bulletin of the Research Council of Israel'' (Section F), the journal publishes articles on all areas of mathematics. The journal is indexed by ''Mathematical Reviews'' and Zentralblatt MATH. Its 2009 MCQ was 0.70, and its 2009 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as i ... was 0.754. External links * Mathematics journals Publications established in 1963 English-language journals Bimonthly journals Hebrew University of Jerusalem {{math-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Rainbow-independent Set
In graph theory, a rainbow-independent set (ISR) is an independent set in a graph, in which each vertex has a different color. Formally, let be a graph, and suppose vertex set is partitioned into subsets , called "colors". A set of vertices is called a rainbow-independent set if it satisfies both the following conditions: * It is an independent set – every two vertices in are not adjacent (there is no edge between them); * It is a rainbow set – contains at most a single vertex from each color . Other terms used in the literature are independent set of representatives, independent transversal, and independent system of representatives. As an example application, consider a faculty with departments, where some faculty members dislike each other. The dean wants to construct a committee with members, one member per department, but without any pair of members who dislike each other. This problem can be presented as finding an ISR in a graph in which the nodes are the fa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Coloring
In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color. Vertex coloring is often used to introduce graph coloring problems, since other coloring problems can be transformed into a vertex coloring instance. For example, an edge coloring of a graph is just a vertex coloring of its line graph, and a face coloring of a plane graph is just a vertex coloring of its dual. However, non-vertex coloring problems are often stated and studied as-is. This is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Independent Set (graph Theory)
In graph theory, an independent set, stable set, coclique or anticlique is a set of vertices in a graph, no two of which are adjacent. That is, it is a set S of vertices such that for every two vertices in S, there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in S. A set is independent if and only if it is a clique in the graph's complement. The size of an independent set is the number of vertices it contains. Independent sets have also been called "internally stable sets", of which "stable set" is a shortening. A maximal independent set is an independent set that is not a proper subset of any other independent set. A maximum independent set is an independent set of largest possible size for a given graph G. This size is called the independence number of ''G'' and is usually denoted by \alpha(G). The optimization problem of finding such a set is called the maximum independent set problem. It is a strongly NP-hard problem. As such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]