Stiffness Matrix
   HOME
*





Stiffness Matrix
In the finite element method for the numerical solution of elliptic partial differential equations, the stiffness matrix is a matrix that represents the system of linear equations that must be solved in order to ascertain an approximate solution to the differential equation. The stiffness matrix for the Poisson problem For simplicity, we will first consider the Poisson problem : -\nabla^2 u = f on some domain , subject to the boundary condition on the boundary of . To discretize this equation by the finite element method, one chooses a set of ''basis functions'' defined on which also vanish on the boundary. One then approximates : u \approx u^h = u_1\varphi_1+\cdots+u_n\varphi_n. The coefficients are determined so that the error in the approximation is orthogonal to each basis function : : \int_\Omega \varphi_i\cdot f \, dx = -\int_\Omega \varphi_i\nabla^2u^h \, dx = -\sum_j\left(\int_\Omega \varphi_i\nabla^2\varphi_j\,dx\right)\, u_j = \sum_j\left(\int_\Omega \nabla\var ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finite Element Method
The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential. The FEM is a general numerical method for solving partial differential equations in two or three space variables (i.e., some boundary value problems). To solve a problem, the FEM subdivides a large system into smaller, simpler parts that are called finite elements. This is achieved by a particular space discretization in the space dimensions, which is implemented by the construction of a mesh of the object: the numerical domain for the solution, which has a finite number of points. The finite element method formulation of a boundary value problem finally results in a system of algebraic equations. The method approximates the unknown function over the domain. The sim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bilinear Form
In mathematics, a bilinear form is a bilinear map on a vector space (the elements of which are called '' vectors'') over a field ''K'' (the elements of which are called ''scalars''). In other words, a bilinear form is a function that is linear in each argument separately: * and * and The dot product on \R^n is an example of a bilinear form. The definition of a bilinear form can be extended to include modules over a ring, with linear maps replaced by module homomorphisms. When is the field of complex numbers , one is often more interested in sesquilinear forms, which are similar to bilinear forms but are conjugate linear in one argument. Coordinate representation Let be an -dimensional vector space with basis . The matrix ''A'', defined by is called the ''matrix of the bilinear form'' on the basis . If the matrix represents a vector with respect to this basis, and analogously, represents another vector , then: B(\mathbf, \mathbf) = \mathbf^\textsf A\mathbf = \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Condition Number
In numerical analysis, the condition number of a function measures how much the output value of the function can change for a small change in the input argument. This is used to measure how sensitive a function is to changes or errors in the input, and how much error in the output results from an error in the input. Very frequently, one is solving the inverse problem: given f(x) = y, one is solving for ''x,'' and thus the condition number of the (local) inverse must be used. In linear regression the condition number of the moment matrix can be used as a diagnostic for multicollinearity. The condition number is an application of the derivative, and is formally defined as the value of the asymptotic worst-case relative change in output for a relative change in input. The "function" is the solution of a problem and the "arguments" are the data in the problem. The condition number is frequently applied to questions in linear algebra, in which case the derivative is straightforward but ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gaussian Quadrature
In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration. (See numerical integration for more on quadrature rules.) An -point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials of degree or less by a suitable choice of the nodes and weights for . The modern formulation using orthogonal polynomials was developed by Carl Gustav Jacobi in 1826. The most common domain of integration for such a rule is taken as , so the rule is stated as :\int_^1 f(x)\,dx \approx \sum_^n w_i f(x_i), which is exact for polynomials of degree or less. This exact rule is known as the Gauss-Legendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if is well-approximated by a polynomial of degree or less on . The Gaus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sparse Matrix
In numerical analysis and scientific computing, a sparse matrix or sparse array is a matrix in which most of the elements are zero. There is no strict definition regarding the proportion of zero-value elements for a matrix to qualify as sparse but a common criterion is that the number of non-zero elements is roughly equal to the number of rows or columns. By contrast, if most of the elements are non-zero, the matrix is considered dense. The number of zero-valued elements divided by the total number of elements (e.g., ''m'' × ''n'' for an ''m'' × ''n'' matrix) is sometimes referred to as the sparsity of the matrix. Conceptually, sparsity corresponds to systems with few pairwise interactions. For example, consider a line of balls connected by springs from one to the next: this is a sparse system as only adjacent balls are coupled. By contrast, if the same line of balls were to have springs connecting each ball to all other balls, the system would correspond to a dense matrix. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry. Etymology The word ''polynomial'' join ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Types Of Mesh
A mesh is a representation of a larger geometric domain by smaller discrete cells. Meshes are commonly used to compute solutions of partial differential equations and render computer graphics, and to analyze geographical and cartographic data. A mesh partitions space into ''elements'' (or ''cells'' or ''zones'') over which the equations can be solved, which then approximates the solution over the larger domain. Element boundaries may be constrained to lie on internal or external boundaries within a model. Higher-quality (better-shaped) elements have better numerical properties, where what constitutes a "better" element depends on the general governing equations and the particular solution to the model instance. Common cell shapes Two-dimensional There are two types of two-dimensional cell shapes that are commonly used. These are the triangle and the quadrilateral. Computationally poor elements will have sharp internal angles or short edges or both. Triangle This cell shape consis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangle Mesh
In computer graphics, a triangle mesh is a type of polygon mesh. It comprises a set of triangles (typically in three dimensions) that are connected by their common edges or vertices. Many graphics software packages and hardware devices can operate more efficiently on triangles that are grouped into meshes than on a similar number of triangles that are presented individually. This is typically because computer graphics do operations on the vertices at the corners of triangles. With individual triangles, the system has to operate on three vertices for every triangle. In a large mesh, there could be eight or more triangles meeting at a single vertex - by processing those vertices just once, it is possible to do a fraction of the work and achieve an identical effect. In many computer graphics applications it is necessary to manage a mesh of triangles. The mesh components are vertices, edges, and triangles. An application might require knowledge of the various connections bet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mesh Generation
Mesh generation is the practice of creating a mesh, a subdivision of a continuous geometric space into discrete geometric and topological cells. Often these cells form a simplicial complex. Usually the cells partition the geometric input domain. Mesh cells are used as discrete local approximations of the larger domain. Meshes are created by computer algorithms, often with human guidance through a GUI , depending on the complexity of the domain and the type of mesh desired. A typical goal is to create a mesh that accurately captures the input domain geometry, with high-quality (well-shaped) cells, and without so many cells as to make subsequent calculations intractable. The mesh should also be fine (have small elements) in areas that are important for the subsequent calculations. Meshes are used for rendering to a computer screen and for physical simulation such as finite element analysis or computational fluid dynamics. Meshes are composed of simple cells like triangles because ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discretized
In applied mathematics, discretization is the process of transferring continuous functions, models, variables, and equations into discrete counterparts. This process is usually carried out as a first step toward making them suitable for numerical evaluation and implementation on digital computers. Dichotomization is the special case of discretization in which the number of discrete classes is 2, which can approximate a continuous variable as a binary variable (creating a dichotomy for modeling purposes, as in binary classification). Discretization is also related to discrete mathematics, and is an important component of granular computing. In this context, ''discretization'' may also refer to modification of variable or category ''granularity'', as when multiple discrete variables are aggregated or multiple discrete categories fused. Whenever continuous data is discretized, there is always some amount of discretization error. The goal is to reduce the amount to a level considere ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weak Formulation
Weak formulations are important tools for the analysis of mathematical equations that permit the transfer of concepts of linear algebra to solve problems in other fields such as partial differential equations. In a weak formulation, equations or conditions are no longer required to hold absolutely (and this is not even well defined) and has instead weak solutions only with respect to certain "test vectors" or "test functions". In a strong formulation, the solution space is constructed such that these equations or conditions are already fulfilled. The Lax–Milgram theorem, named after Peter Lax and Arthur Milgram who proved it in 1954, provides weak formulations for certain systems on Hilbert spaces. General concept Let V be a Banach space, V' its dual space, A\colon V \to V', and f \in V'. Finding the solution u \in V of the equation Au = f is equivalent to finding u\in V such that, for all v \in V, uv) = f(v). Here, v is called a test vector or test function. To bring this ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]