Stellar Rotation
   HOME
*



picture info

Stellar Rotation
Stellar rotation is the angular motion of a star about its axis. The rate of rotation can be measured from the spectrum of the star, or by timing the movements of active features on the surface. The rotation of a star produces an equatorial bulge due to centrifugal force. As stars are not solid bodies, they can also undergo differential rotation. Thus the equator of the star can rotate at a different angular velocity than the higher latitudes. These differences in the rate of rotation within a star may have a significant role in the generation of a stellar magnetic field. The magnetic field of a star interacts with the stellar wind. As the wind moves away from the star its rate of angular velocity slows. The magnetic field of the star interacts with the wind, which applies a drag to the stellar rotation. As a result, angular momentum is transferred from the star to the wind, and over time this gradually slows the star's rate of rotation. Measurement Unless a star is being observ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Achernar
Achernar is the brightest star in the constellation of Eridanus, and the ninth-brightest in the night sky. It has the Bayer designation Alpha Eridani, which is Latinized from α Eridani and abbreviated Alpha Eri or α Eri. The name Achernar applies to the primary component of a binary system. The two components are designated Alpha Eridani A (the primary) and B (the secondary), with the latter known informally as Achernar B. As determined by the ''Hipparcos'' astrometry satellite, this system is located at a distance of approximately from the Sun. Of the ten apparent brightest stars in the night-time sky, Alpha Eridani is the hottest and bluest in color, due to Achernar being of spectral type B. Achernar has an unusually rapid rotational velocity, causing it to become oblate in shape. The secondary is smaller, of spectral type A, and orbits Achernar at a distance of . Nomenclature ''α Eridani'' ( Latinised to ''Alpha Eridani'') is the system's Bayer designation. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Giant Star
A giant star is a star with substantially larger radius and luminosity than a main sequence, main-sequence (or ''dwarf'') star of the same effective temperature, surface temperature.Giant star, entry in ''Astronomy Encyclopedia'', ed. Patrick Moore, New York: Oxford University Press, 2002. . They lie above the main sequence (luminosity class V in the Spectral classification#Yerkes spectral classification, Yerkes spectral classification) on the Hertzsprung–Russell diagram and correspond to luminosity classes II and III.giant, entry in ''The Facts on File Dictionary of Astronomy'', ed. John Daintith and William Gould, New York: Facts On File, Inc., 5th ed., 2006. . The terms ''giant'' and ''dwarf'' were coined for stars of quite different luminosity despite similar temperature or spectral type by Ejnar Hertzsprung about 1905. Giant stars have radii up to a few hundred times the solar radii, Sun and luminosities between 10 and a few thousand times that of the Sun. Stars still mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conservation Of Angular Momentum
In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved. Bicycles and motorcycles, frisbees, rifled bullets, and gyroscopes owe their useful properties to conservation of angular momentum. Conservation of angular momentum is also why hurricanes form spirals and neutron stars have high rotational rates. In general, conservation limits the possible motion of a system, but it does not uniquely determine it. The three-dimensional angular momentum for a point particle is classically represented as a pseudovector , the cross product of the particle's position vector (relative to some origin) and its momentum vector; the latter is in Newtonian mechanics. Unlike linear momentum, angular momentum d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dynamo Theory
In physics, the dynamo theory proposes a mechanism by which a celestial body such as Earth or a star generates a magnetic field. The dynamo theory describes the process through which a rotating, convecting, and electrically conducting fluid can maintain a magnetic field over astronomical time scales. A dynamo is thought to be the source of the Earth's magnetic field and the magnetic fields of Mercury and the Jovian planets. History of theory When William Gilbert published ''de Magnete'' in 1600, he concluded that the Earth is magnetic and proposed the first hypothesis for the origin of this magnetism: permanent magnetism such as that found in lodestone. In 1919, Joseph Larmor proposed that a dynamo might be generating the field. However, even after he advanced his hypothesis, some prominent scientists advanced alternative explanations. Einstein believed that there might be an asymmetry between the charges of the electron and proton so that the Earth's magnetic field would ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Meridional Flow
Zonal and meridional flow are directions and regions of fluid flow on a globe. Zonal flow follows a pattern along latitudinal lines, latitudinal circles or in the west–east direction. Meridional flow follows a pattern from north to south, or from south to north, along the Earth's longitude lines, longitudinal circles (meridian) or in the north–south direction. These terms are often used in the atmospheric and earth sciences to describe global phenomena, such as "meridional wind", or "zonal average temperature". In the context of physics, zonal flow connotes a tendency of flux to conform to a pattern parallel to the equator of a sphere. In meteorological term regarding atmospheric circulation, zonal flow brings a temperature contrast along the Earth's longitude. Extratropical cyclones in zonal flows tend to be weaker, moving faster and producing relatively little impact on local weather. Extratropical cyclones in meridional flows tend to be stronger and move slower. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convection
Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the convection is unspecified, convection due to the effects of thermal expansion and buoyancy can be assumed. Convection may also take place in soft solids or mixtures where particles can flow. Convective flow may be transient (such as when a multiphase mixture of oil and water separates) or steady state (see Convection cell). The convection may be due to gravitational, electromagnetic or fictitious body forces. Heat transfer by natural convection plays a role in the structure of Earth's atmosphere, its oceans, and its mantle. Discrete convective cells in the atmosphere can be identified by clouds, with stronger convection resulting in thunderstorms. Natural convection also plays a role in stellar physics. Convection is often categorised or d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

AB Doradus
AB Doradus is a pre-main-sequence quadruple star system in the constellation Dorado. The primary is a flare star that shows periodic increases in activity. The primary star in this system spins at a rate 50 times that of the Sun, and consequently has a strong magnetic field. It has a greater number of star spots than the Sun. These can cause the luminosity of the star to appear to vary over each orbital cycle. Measurements of the spin rate of this star at its equator have shown that it varies over time due to the effect of this magnetic field. The system has four components consisting of a pair of binary star systems separated by an angle of about 9″. The binary star AB Doradus Ba/Bb orbits the primary AB Doradus A at an average distance of 135 astronomical units (AUs). AB Doradus C is a closer in companion that orbits the primary at a distance of 5.1 AU, and has an orbital period of 11.75 years. AB Doradus C is among the lowest-mass stars ever found. At an esti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vega
Vega is the brightest star in the northern constellation of Lyra. It has the Bayer designation α Lyrae, which is Latinised to Alpha Lyrae and abbreviated Alpha Lyr or α Lyr. This star is relatively close at only from the Sun, and one of the most luminous stars in the Sun's neighborhood. It is the fifth-brightest star in the night sky, and the second-brightest star in the northern celestial hemisphere, after Arcturus. Vega has been extensively studied by astronomers, leading it to be termed "arguably the next most important star in the sky after the Sun". Vega was the northern pole star around 12,000 BCE and will be so again around the year 13,727, when its declination will be . Vega was the first star other than the Sun to have its image and spectrum photographed. It was one of the first stars whose distance was estimated through parallax measurements. Vega has functioned as the baseline for calibrating the photometric brightness scale and was one of the st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pleione (star)
PleionePronounced or is a binary star and the seventh-brightest star in the Pleiades star cluster (Messier 45). It has the variable star designation BU Tauri (BU Tau) and the Flamsteed designation 28 Tauri (28 Tau). The star is located approximately from the Sun, appearing in the constellation of Taurus. Pleione is located close on the sky to the brighter star Atlas, so is difficult for stargazers to distinguish with the naked eye despite being a fifth magnitude star. The brighter star of the Pleione binary pair, component A, is a hot type B star 184 times more luminous than the Sun. It is classified as Be star with certain distinguishing traits: periodic phase changes and a complex circumstellar environment composed of two gaseous disks at different angles to each other. The primary star rotates rapidly, close to its breakup velocity, even faster than Achernar. Although some research on the companion star has been performed, stellar characteristics of the orbiti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alpha Arae
Alpha Arae, Latinized from α Arae, is the second brightest star in the southern constellation of Ara. With an average apparent visual magnitude 2.93, it is readily visible to the naked eye from the southern hemisphere. This star is close enough to the Earth that its distance can be estimated using parallax data collected during the Hipparcos mission. It is around away, with a 7% margin of error. The visual magnitude of the star is diminished by 0.10 magnitudes as a result of extinction from intervening gas and dust. Properties Alpha Arae has a stellar classification of B2 Vne, indicating that it is a massive B-type main sequence star. The 'n' notation in the suffix indicates that the absorption lines in the star's spectrum appear spread out and nebulous because of the Doppler effect from rapid rotation. The measured projected rotational velocity has been measured as high as . Meilland et al. (2007) estimate the pole of the star is inclined by 55° to the line of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Von Zeipel Theorem
In astrophysics, the von Zeipel theorem states that the radiative flux F in a uniformly rotating star is proportional to the local effective gravity g_\text. The theorem is named after Swedish astronomer Edvard Hugo von Zeipel. The theorem is: : F = -\frac g_\text, where the luminosity L and mass M_* are evaluated on a surface of constant pressure P. The effective temperature T_\text can then be found at a given colatitude \theta from the local effective gravity: : T_\text(\theta) \sim g_\text^(\theta). This relation ignores the effect of convection in the envelope, so it primarily applies to early-type stars. According to the theory of rotating stars, if the rotational velocity of a star depends only on the radius, it cannot simultaneously be in thermal and hydrostatic equilibrium. This is called the von Zeipel paradox. The paradox is resolved, however, if the rotational velocity also depends on height, or there is a meridional circulation. A similar situation may arise in a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gravity Darkening
Gravity darkening, also referred to as gravity brightening, is an astronomical phenomenon where the poles of a star are brighter than the equator, due to rapid rotation and oblate shape. When a star is oblate, it has a larger radius at its equator than it does at its poles. As a result, the poles have a higher surface gravity, and thus higher temperature and pressure is needed to maintain hydrostatic equilibrium. Thus, the poles are "gravity brightened", and the equator "gravity darkened". The star becomes oblate (and hence gravity darkening occurs) because the centrifugal force resulting from rotation creates additional outward pressure on the star. The centrifugal force is expressed mathematically as : F_\text = m \Omega^2 \rho, where m is mass (in this case of a small volume element of the star), \Omega is the angular velocity, and \rho is the radial distance from the axis of rotation. In the case of a star, the value of \rho is largest at the equator and smallest at the poles ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]