Stein's Unbiased Risk Estimate
   HOME
*





Stein's Unbiased Risk Estimate
In statistics, Stein's unbiased risk estimate (SURE) is an unbiased estimator of the mean-squared error of "a nearly arbitrary, nonlinear biased estimator." In other words, it provides an indication of the accuracy of a given estimator. This is important since the true mean-squared error of an estimator is a function of the unknown parameter to be estimated, and thus cannot be determined exactly. The technique is named after its discoverer, Charles Stein. Formal statement Let \mu \in ^d be an unknown parameter and let x \in ^d be a measurement vector whose components are independent and distributed normally with mean \mu_i, i=1,...,d, and variance \sigma^2. Suppose h(x) is an estimator of \mu from x, and can be written h(x) = x + g(x), where g is weakly differentiable. Then, Stein's unbiased risk estimate is given by :\operatorname(h) = d\sigma^2 + \, g(x)\, ^2 + 2 \sigma^2 \sum_^d \frac g_i(x) = -d\sigma^2 + \, g(x)\, ^2 + 2 \sigma^2 \sum_^d \frac h_i(x), where g_i(x) is t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistics
Statistics (from German language, German: ''wikt:Statistik#German, Statistik'', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of statistical survey, surveys and experimental design, experiments.Dodge, Y. (2006) ''The Oxford Dictionary of Statistical Terms'', Oxford University Press. When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey sample (statistics), samples. Representative sampling as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bias Of An Estimator
In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called ''unbiased''. In statistics, "bias" is an property of an estimator. Bias is a distinct concept from consistency: consistent estimators converge in probability to the true value of the parameter, but may be biased or unbiased; see bias versus consistency for more. All else being equal, an unbiased estimator is preferable to a biased estimator, although in practice, biased estimators (with generally small bias) are frequently used. When a biased estimator is used, bounds of the bias are calculated. A biased estimator may be used for various reasons: because an unbiased estimator does not exist without further assumptions about a population; because an estimator is difficult to compute (as in unbiased estimation of standard deviation); because a biased estimato ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Estimator
In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. For example, the sample mean is a commonly used estimator of the population mean. There are point and interval estimators. The point estimators yield single-valued results. This is in contrast to an interval estimator, where the result would be a range of plausible values. "Single value" does not necessarily mean "single number", but includes vector valued or function valued estimators. ''Estimation theory'' is concerned with the properties of estimators; that is, with defining properties that can be used to compare different estimators (different rules for creating estimates) for the same quantity, based on the same data. Such properties can be used to determine the best rules to use under given circumstances. However, in robust statistics, statistica ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mean-squared Error
In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of an estimator (of a procedure for estimating an unobserved quantity) measures the average of the squares of the errors—that is, the average squared difference between the estimated values and the actual value. MSE is a risk function, corresponding to the expected value of the squared error loss. The fact that MSE is almost always strictly positive (and not zero) is because of randomness or because the estimator does not account for information that could produce a more accurate estimate. In machine learning, specifically empirical risk minimization, MSE may refer to the ''empirical'' risk (the average loss on an observed data set), as an estimate of the true MSE (the true risk: the average loss on the actual population distribution). The MSE is a measure of the quality of an estimator. As it is derived from the square of Euclidean distance, it is always a positive value that decreases as the error a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Charles Stein (statistician)
Charles Max Stein (March 22, 1920 – November 24, 2016) was an American mathematical statistician and professor of statistics at Stanford University. He received his Ph.D in 1947 at Columbia University with advisor Abraham Wald. He held faculty positions at Berkeley and the University of Chicago before moving permanently to Stanford in 1953. He is known for Stein's paradox in decision theory, which shows that ordinary least squares estimates can be uniformly improved when many parameters are estimated; for Stein's lemma, giving a formula for the covariance of one random variable with the value of a function of another when the two random variables are jointly normally distributed; and for Stein's method, a way of proving theorems such as the Central Limit Theorem that does not require the variables to be independent and identically distributed. He was a member of the National Academy of Sciences. He died in November 2016 at the age of 96. Works *''Approximate Computatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Weak Derivative
In mathematics, a weak derivative is a generalization of the concept of the derivative of a function (''strong derivative'') for functions not assumed differentiable, but only integrable, i.e., to lie in the L''p'' space L^1( ,b. The method of integration by parts holds that for differentiable functions u and \varphi we have :\begin \int_a^b u(x) \varphi'(x) \, dx & = \Big (x) \varphi(x)\Biga^b - \int_a^b u'(x) \varphi(x) \, dx. \\ pt \end A function ''u''' being the weak derivative of ''u'' is essentially defined by the requirement that this equation must hold for all infinitely differentiable functions ''φ'' vanishing at the boundary points (\varphi(a)=\varphi(b)=0). Definition Let u be a function in the Lebesgue space L^1( ,b. We say that v in L^1( ,b is a weak derivative of u if :\int_a^b u(t)\varphi'(t) \, dt=-\int_a^b v(t)\varphi(t) \, dt for ''all'' infinitely differentiable functions \varphi with \varphi(a)=\varphi(b)=0. Generalizing to n dimensions, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euclidean Norm
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension, including the three-dimensional space and the '' Euclidean plane'' (dimension two). The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics. Ancient Greek geometers introduced Euclidean space for modeling the physical space. Their work was collected by the ancient Greek mathematician Euclid in his ''Elements'', with the great innovation of '' proving'' all properties of the space as theorems, by starting from a few fundamental properties, called ''postulates'', which either were considered as evident (for example, there is exactly one straight line passing through two points), or seemed impossible to prove (par ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integration By Parts
In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. It is frequently used to transform the antiderivative of a product of functions into an antiderivative for which a solution can be more easily found. The rule can be thought of as an integral version of the product rule of differentiation. The integration by parts formula states: \begin \int_a^b u(x) v'(x) \, dx & = \Big (x) v(x)\Biga^b - \int_a^b u'(x) v(x) \, dx\\ & = u(b) v(b) - u(a) v(a) - \int_a^b u'(x) v(x) \, dx. \end Or, letting u = u(x) and du = u'(x) \,dx while v = v(x) and dv = v'(x) \, dx, the formula can be written more compactly: \int u \, dv \ =\ uv - \int v \, du. Mathematician Brook Taylor discovered integration by parts, first publishing the idea in 1715. More general formulations of integration by parts ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


James–Stein Estimator
The James–Stein estimator is a biased estimator of the mean, \boldsymbol\theta, of (possibly) correlated Gaussian distributed random vectors Y = \ with unknown means \. It arose sequentially in two main published papers, the earlier version of the estimator was developed by Charles Stein in 1956, which reached a relatively shocking conclusion that while the then usual estimate of the mean, or the sample mean written by Stein and James as (Y_i) = , is admissible when m \leq 2, however it is inadmissible when m \geq 3 and proposed a possible improvement to the estimator that shrinks the sample means towards a more central mean vector \boldsymbol\nu (which can be chosen a priori or commonly the "average of averages" of the sample means given all samples share the same size), is commonly referred to as Stein's example or paradox. This earlier result was improved later by Willard James and Charles Stein in 1961 through simplifying the original process. It can be shown that t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Shrinkage Estimator
In statistics, shrinkage is the reduction in the effects of sampling variation. In regression analysis, a fitted relationship appears to perform less well on a new data set than on the data set used for fitting. In particular the value of the coefficient of determination 'shrinks'. This idea is complementary to overfitting and, separately, to the standard adjustment made in the coefficient of determination to compensate for the subjunctive effects of further sampling, like controlling for the potential of new explanatory terms improving the model by chance: that is, the adjustment formula itself provides "shrinkage." But the adjustment formula yields an artificial shrinkage. A shrinkage estimator is an estimator that, either explicitly or implicitly, incorporates the effects of shrinkage. In loose terms this means that a naive or raw estimate is improved by combining it with other information. The term relates to the notion that the improved estimate is made closer to the value supp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


David Donoho
David Leigh Donoho (born March 5, 1957) is an American statistician. He is a professor of statistics at Stanford University, where he is also the Anne T. and Robert M. Bass Professor in the Humanities and Sciences. His work includes the development of effective methods for the construction of low-dimensional representations for high-dimensional data problems ( multiscale geometric analysis), development of wavelets for denoising and compressed sensing. He was elected a Member of the American Philosophical Society in 2019. Academic biography Donoho did his undergraduate studies at Princeton University, graduating in 1978. His undergraduate thesis advisor was John W. Tukey. Donoho obtained his Ph.D. from Harvard University in 1983, under the supervision of Peter J. Huber.. He was on the faculty of the University of California, Berkeley, from 1984 to 1990 before moving to Stanford. He has been the Ph.D. advisor of at least 20 doctoral students, including Jianqing Fan and Emmanue ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wavelet
A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases or decreases, and then returns to zero one or more times. Wavelets are termed a "brief oscillation". A taxonomy of wavelets has been established, based on the number and direction of its pulses. Wavelets are imbued with specific properties that make them useful for signal processing. For example, a wavelet could be created to have a frequency of Middle C and a short duration of roughly one tenth of a second. If this wavelet were to be convolved with a signal created from the recording of a melody, then the resulting signal would be useful for determining when the Middle C note appeared in the song. Mathematically, a wavelet correlates with a signal if a portion of the signal is similar. Correlation is at the core of many practical wavelet applications. As a mathematical tool, wavelets can be used to extract information from many different kinds of data, including but not limited to au ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]