Squashed Entanglement
   HOME
*





Squashed Entanglement
Squashed entanglement, also called CMI entanglement (CMI can be pronounced "see me"), is an information theoretic measure of quantum entanglement for a bipartite quantum system. If \varrho_ is the density matrix of a system (A,B) composed of two subsystems A and B, then the CMI entanglement E_ of system (A,B) is defined by where K is the set of all density matrices \varrho_ for a tripartite system (A,B,\Lambda) such that \varrho_=tr_\Lambda (\varrho_). Thus, CMI entanglement is defined as an extremum of a functional S(A:B , \Lambda) of \varrho_. We define S(A:B , \Lambda), the quantum Conditional Mutual Information (CMI), below. A more general version of Eq.(1) replaces the “min” (minimum) in Eq.(1) by an “inf” (infimum). When \varrho_ is a pure state, E_(\varrho_)=S(\varrho_)=S(\varrho_), in agreement with the definition of entanglement of formation for pure states. Here S(\varrho) is the Von Neumann entropy of density matrix \varrho. Motivation for definition of C ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Entanglement Monotone
In quantum information and quantum computation, an entanglement monotone is a function that quantifies the amount of entanglement present in a quantum state. Any entanglement monotone is a nonnegative function whose value does not increase under local operations and classical communication. Definition Let \mathcal(\mathcal_A\otimes\mathcal_B)be the space of all states, i.e., Hermitian positive semi-definite operators with trace one, over the bipartite Hilbert space \mathcal_A\otimes\mathcal_B. An entanglement measure is a function \mu:\to \mathbb_such that: # \mu(\rho)=0 if \rho is separable; # Monotonically decreasing under LOCC, viz., for the Kraus operator In quantum mechanics, a quantum operation (also known as quantum dynamical map or quantum process) is a mathematical formalism used to describe a broad class of transformations that a quantum mechanical system can undergo. This was first discusse ... E_i\otimes F_i corresponding to the LOCC \mathcal_, let p_i=\m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Trace
In linear algebra and functional analysis, the partial trace is a generalization of the trace. Whereas the trace is a scalar valued function on operators, the partial trace is an operator-valued function. The partial trace has applications in quantum information and decoherence which is relevant for quantum measurement and thereby to the decoherent approaches to interpretations of quantum mechanics, including consistent histories and the relative state interpretation. Details Suppose V, W are finite-dimensional vector spaces over a field, with dimensions m and n, respectively. For any space A, let L(A) denote the space of linear operators on A. The partial trace over W is then written as \operatorname_W: \operatorname(V \otimes W) \to \operatorname(V). It is defined as follows: For T\in \operatorname(V \otimes W), let e_1, \ldots, e_m , and f_1, \ldots, f_n , be bases for ''V'' and ''W'' respectively; then ''T'' has a matrix representation : \ \quad 1 \leq k, i \le ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Qubits
In quantum computing, a qubit () or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, one of the simplest quantum systems displaying the peculiarity of quantum mechanics. Examples include the spin of the electron in which the two levels can be taken as spin up and spin down; or the polarization of a single photon in which the two states can be taken to be the vertical polarization and the horizontal polarization. In a classical system, a bit would have to be in one state or the other. However, quantum mechanics allows the qubit to be in a coherent superposition of both states simultaneously, a property that is fundamental to quantum mechanics and quantum computing. Etymology The coining of the term ''qubit'' is attributed to Benjamin Schumacher. In the acknowledgments of his 1995 paper, Schumacher states that the term ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rate Distortion Theory
Rate or rates may refer to: Finance * Rates (tax), a type of taxation system in the United Kingdom used to fund local government * Exchange rate, rate at which one currency will be exchanged for another Mathematics and science * Rate (mathematics), a specific kind of ratio, in which two measurements are related to each other (often with respect to time) * Rate function, a function used to quantify the probabilities of a rare event * Reaction rate, in chemistry the speed at which reactants are converted into products Military * Naval rate, a junior enlisted member of a navy * Rating system of the Royal Navy, a former method of indicating a British warship's firepower People * Ed Rate (1899–1990), American football player * José Carlos Rates (1879–1945), General Secretary of the Portuguese Communist Party * Peter of Rates (died 60 AD), traditionally considered to be the first bishop of Braga Other uses * Rate (building), the class of a building in late Georgian and early ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Information Theory
Information theory is the scientific study of the quantification, storage, and communication of information. The field was originally established by the works of Harry Nyquist and Ralph Hartley, in the 1920s, and Claude Shannon in the 1940s. The field is at the intersection of probability theory, statistics, computer science, statistical mechanics, information engineering, and electrical engineering. A key measure in information theory is entropy. Entropy quantifies the amount of uncertainty involved in the value of a random variable or the outcome of a random process. For example, identifying the outcome of a fair coin flip (with two equally likely outcomes) provides less information (lower entropy) than specifying the outcome from a roll of a die (with six equally likely outcomes). Some other important measures in information theory are mutual information, channel capacity, error exponents, and relative entropy. Important sub-fields of information theory include sourc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Separable States
In quantum mechanics, separable states are quantum states belonging to a composite space that can be factored into individual states belonging to separate subspaces. A state is said to be entangled if it is not separable. In general, determining if a state is separable is not straightforward and the problem is classed as NP-hard. Separability of bipartite systems Consider first composite states with two degrees of freedom, referred to as ''bipartite states''. By a postulate of quantum mechanics these can be described as vectors in the tensor product space H_1\otimes H_2. In this discussion we will focus on the case of the Hilbert spaces H_1 and H_2 being finite-dimensional. Pure states Let \_^n\subset H_1 and \_^m \subset H_2 be orthonormal bases for H_1 and H_2, respectively. A basis for H_1 \otimes H_2 is then \, or in more compact notation \. From the very definition of the tensor product, any vector of norm 1, i.e. a pure state of the composite system, can be written ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bayesian Network
A Bayesian network (also known as a Bayes network, Bayes net, belief network, or decision network) is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases. Efficient algorithms can perform inference and learning in Bayesian networks. Bayesian networks that model sequences of variables (''e.g.'' speech signals or protein sequences) are called dynamic Bayesian networks. Generalizations of Bayesian networks that can represent and solve decision problems under uncertainty are called influence diagrams. Graphical m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bnet Fan2
''BNET'' was an online magazine dedicated to issues of business management. It was owned by CBS Interactive and was a part of its business portfolio alongside ZDNet, TechRepublic, SmartPlanet SmartPlanet was an online magazine that covered clean technology and information technology as it related to healthcare, science, transportation, corporate sustainability, architecture, and design. It was part of the business portfolio of CBS In .... ''BNET'' site registration allowed users to receive several e-newsletters, download certain whitepapers, and post comments on their site. ''BNET'' was one of the top 10 financial news & research sites on the Internet from May 2007 to May 2008, according to comScore's rankings. In 2012, ''BNET'' was merged into CBS MoneyWatch.com. References *Matthew Schwartz "CNET Networks rolls out BNET, Web site targeting business managers,"''B to B'', March 1, 2007 *Terrence Russell''Wired Blog Network'', November 8, 2007 External links BNET webs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strong Subadditivity Of Quantum Entropy
In quantum information theory, strong subadditivity of quantum entropy (SSA) is the relation among the von Neumann entropies of various quantum subsystems of a larger quantum system consisting of three subsystems (or of one quantum system with three degrees of freedom). It is a basic theorem in modern quantum information theory. It was conjectured by D. W. Robinson and D. Ruelle in 1966 and O. E. Lanford III and D. W. Robinson in 1968 and proved in 1973 by E.H. Lieb and M.B. Ruskai, building on results obtained by Lieb in his proof of the Wigner-Yanase-Dyson conjecture. The classical version of SSA was long known and appreciated in classical probability theory and information theory. The proof of this relation in the classical case is quite easy, but the quantum case is difficult because of the non-commutativity of the reduced density matrices describing the quantum subsystems. Some useful references here include: *"Quantum Computation and Quantum Information" *"Quantum Entr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mutual Information
In probability theory and information theory, the mutual information (MI) of two random variables is a measure of the mutual dependence between the two variables. More specifically, it quantifies the " amount of information" (in units such as shannons (bits), nats or hartleys) obtained about one random variable by observing the other random variable. The concept of mutual information is intimately linked to that of entropy of a random variable, a fundamental notion in information theory that quantifies the expected "amount of information" held in a random variable. Not limited to real-valued random variables and linear dependence like the correlation coefficient, MI is more general and determines how different the joint distribution of the pair (X,Y) is from the product of the marginal distributions of X and Y. MI is the expected value of the pointwise mutual information (PMI). The quantity was defined and analyzed by Claude Shannon in his landmark paper "A Mathemati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Entanglement
Quantum entanglement is the phenomenon that occurs when a group of particles are generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics. Measurements of physical properties such as position, momentum, spin, and polarization performed on entangled particles can, in some cases, be found to be perfectly correlated. For example, if a pair of entangled particles is generated such that their total spin is known to be zero, and one particle is found to have clockwise spin on a first axis, then the spin of the other particle, measured on the same axis, is found to be anticlockwise. However, this behavior gives ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Random Variables
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the possible upper sides of a flipped coin such as heads H and tails T) in a sample space (e.g., the set \) to a measurable space, often the real numbers (e.g., \ in which 1 corresponding to H and -1 corresponding to T). Informally, randomness typically represents some fundamental element of chance, such as in the roll of a dice; it may also represent uncertainty, such as measurement error. However, the interpretation of probability is philosophically complicated, and even in specific cases is not always straightforward. The purely mathematical analysis of random variables is independent of such interpretational difficulties, and can be based upon a rigorous axiomatic setup. In the formal mathematical language of measure theory, a random ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]