Sophie Germain Counter Mode
   HOME
*





Sophie Germain Counter Mode
A new mode called Sophie Germain Counter Mode (SGCM) has been proposed as a variant of the Galois/Counter Mode of operation for block ciphers. Instead of the binary field GF(2128), it uses modular arithmetic in GF(''p'') where ''p'' is a safe prime with corresponding Sophie Germain prime . SGCM does prevent the specific "weak key" attack described in its paper, however there are other ways of modifying the message that will achieve the same forgery probability against SGCM as is possible against GCM: by modifying a valid ''n''-word message, you can create a SGCM forgery with probability circa . That is, its authentication bounds are no better than those of Galois/Counter Mode In cryptography, Galois/Counter Mode (GCM) is a mode of operation for symmetric-key cryptographic block ciphers which is widely adopted for its performance. GCM throughput rates for state-of-the-art, high-speed communication channels can be achiev .... SGCM when implemented in hardware has a higher gate co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Galois/Counter Mode
In cryptography, Galois/Counter Mode (GCM) is a mode of operation for symmetric-key cryptographic block ciphers which is widely adopted for its performance. GCM throughput rates for state-of-the-art, high-speed communication channels can be achieved with inexpensive hardware resources. The operation is an authenticated encryption algorithm designed to provide both data authenticity (integrity) and confidentiality. GCM is defined for block ciphers with a block size of 128 bits. Galois Message Authentication Code (GMAC) is an authentication-only variant of the GCM which can form an incremental message authentication code. Both GCM and GMAC can accept initialization vectors of arbitrary length. Different block cipher modes of operation can have significantly different performance and efficiency characteristics, even when used with the same block cipher. GCM can take full advantage of parallel processing and implementing GCM can make efficient use of an instruction pipeline or a hard ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Safe Prime
In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 + 1 = 23 is its associated safe prime. Sophie Germain primes are named after French mathematician Sophie Germain, who used them in her investigations of Fermat's Last Theorem. One attempt by Germain to prove Fermat’s Last Theorem was to let ''p'' be a prime number of the form 8''k'' + 7 and to let ''n'' = ''p'' – 1. In this case, x^n + y^n = z^n is unsolvable. Germain’s proof, however, remained unfinished. Through her attempts to solve Fermat's Last Theorem, Germain developed a result now known as Germain's Theorem which states that if ''p'' is an odd prime and 2''p'' + 1 is also prime, then ''p'' must divide ''x'', ''y'', or ''z.'' Otherwise, x^n + y^n \neq z^n. This case where ''p'' does not divide ''x'', ''y'', or ''z'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sophie Germain Prime
In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 + 1 = 23 is its associated safe prime. Sophie Germain primes are named after French mathematician Sophie Germain, who used them in her investigations of Fermat's Last Theorem. One attempt by Germain to prove Fermat’s Last Theorem was to let ''p'' be a prime number of the form 8''k'' + 7 and to let ''n'' = ''p'' – 1. In this case, x^n + y^n = z^n is unsolvable. Germain’s proof, however, remained unfinished. Through her attempts to solve Fermat's Last Theorem, Germain developed a result now known as Germain's Theorem which states that if ''p'' is an odd prime and 2''p'' + 1 is also prime, then ''p'' must divide ''x'', ''y'', or ''z.'' Otherwise, x^n + y^n \neq z^n. This case where ''p'' does not divide ''x'', ''y'', or ''z'' i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]