Simplicial Homotopy
   HOME
*





Simplicial Homotopy
In algebraic topology, a simplicial homotopypg 23 is an analog of a homotopy between topological spaces for simplicial sets. If :f, g: X \to Y are maps between simplicial sets, a simplicial homotopy from ''f'' to ''g'' is a map :h: X \times \Delta^ \to Y such that the diagram (se formed by ''f'', ''g'' and ''h'' commute; the key is to use the diagram that results in f(x) = h(x, 0) and g(x) = h(x, 1) for all ''x'' in ''X''. See also *Kan complex *Dold–Kan correspondence (under which a chain homotopy corresponds to a simplicial homotopy) *Simplicial homology In algebraic topology, simplicial homology is the sequence of homology groups of a simplicial complex. It formalizes the idea of the number of holes of a given dimension in the complex. This generalizes the number of connected components (the case ... References External links *http://ncatlab.org/nlab/show/simplicial+homotopy Homotopy theory Simplicial sets {{topology-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homotopy
In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deformation being called a homotopy (, ; , ) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology. In practice, there are technical difficulties in using homotopies with certain spaces. Algebraic topologists work with compactly generated spaces, CW complexes, or spectra. Formal definition Formally, a homotopy between two continuous functions ''f'' and ''g'' from a topological space ''X'' to a topological space ''Y'' is defined to be a continuous function H: X \times ,1\to Y from the product of the space ''X'' with the unit interval , 1to ''Y'' such that H(x,0) = f(x) and H(x,1) = g(x) for all x \in X. If we think of the second ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simplicial Set
In mathematics, a simplicial set is an object composed of ''simplices'' in a specific way. Simplicial sets are higher-dimensional generalizations of directed graphs, partially ordered sets and categories. Formally, a simplicial set may be defined as a contravariant functor from the simplex category to the category of sets. Simplicial sets were introduced in 1950 by Samuel Eilenberg and Joseph A. Zilber. Every simplicial set gives rise to a "nice" topological space, known as its geometric realization. This realization consists of geometric simplices, glued together according to the rules of the simplicial set. Indeed, one may view a simplicial set as a purely combinatorial construction designed to capture the essence of a "well-behaved" topological space for the purposes of homotopy theory. Specifically, the category of simplicial sets carries a natural model structure, and the corresponding homotopy category is equivalent to the familiar homotopy category of topological spaces. S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kan Complex
In mathematics, Kan complexes and Kan fibrations are part of the theory of simplicial sets. Kan fibrations are the fibrations of the standard model category structure on simplicial sets and are therefore of fundamental importance. Kan complexes are the fibrant objects in this model category. The name is in honor of Daniel Kan. Definitions Definition of the standard n-simplex For each ''n'' ≥ 0, recall that the standard n-simplex, \Delta^n, is the representable simplicial set :\Delta^n(i) = \mathrm_ ( Applying the geometric realization functor to this simplicial set gives a space homeomorphic to the topological standard n-simplex: the convex subspace of ℝn+1 consisting of all points (t_0,\dots,t_n) such that the coordinates are non-negative and sum to 1. Definition of a horn For each ''k'' ≤ ''n'', this has a subcomplex \Lambda^n_k, the ''k''-th horn inside \Delta^n, corresponding to the boundary of the ''n''-simplex, with the ''k''-th face r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dold–Kan Correspondence
In mathematics, more precisely, in the theory of simplicial sets, the Dold–Kan correspondence (named after Albrecht Dold and Daniel Kan) states that there is an equivalence between the category of (nonnegatively graded) chain complexes and the category of simplicial abelian groups. Moreover, under the equivalence, the nth homology group of a chain complex is the nth homotopy group of the corresponding simplicial abelian group, and a chain homotopy corresponds to a simplicial homotopy. (In fact, the correspondence preserves the respective standard model structures.) Example: Let ''C'' be a chain complex that has an abelian group ''A'' in degree ''n'' and zero in all other degrees. Then the corresponding simplicial group is the Eilenberg–MacLane space K(A, n). There is also an ∞-category-version of the Dold–Kan correspondence. The book "Nonabelian Algebraic Topology" cited below has a Section 14.8 on cubical versions of the Dold–Kan theorem, and relates them to a prev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chain Homotopy
In homological algebra in mathematics, the homotopy category ''K(A)'' of chain complexes in an additive category ''A'' is a framework for working with chain homotopies and homotopy equivalences. It lies intermediate between the category of chain complexes ''Kom(A)'' of ''A'' and the derived category ''D(A)'' of ''A'' when ''A'' is abelian; unlike the former it is a triangulated category, and unlike the latter its formation does not require that ''A'' is abelian. Philosophically, while ''D(A)'' turns into isomorphisms any maps of complexes that are quasi-isomorphisms in ''Kom(A)'', ''K(A)'' does so only for those that are quasi-isomorphisms for a "good reason", namely actually having an inverse up to homotopy equivalence. Thus, ''K(A)'' is more understandable than ''D(A)''. Definitions Let ''A'' be an additive category. The homotopy category ''K(A)'' is based on the following definition: if we have complexes ''A'', ''B'' and maps ''f'', ''g'' from ''A'' to ''B'', a chain homoto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simplicial Homology
In algebraic topology, simplicial homology is the sequence of homology groups of a simplicial complex. It formalizes the idea of the number of holes of a given dimension in the complex. This generalizes the number of connected components (the case of dimension 0). Simplicial homology arose as a way to study topological spaces whose building blocks are ''n''-simplices, the ''n''-dimensional analogs of triangles. This includes a point (0-simplex), a line segment (1-simplex), a triangle (2-simplex) and a tetrahedron (3-simplex). By definition, such a space is homeomorphic to a simplicial complex (more precisely, the geometric realization of an abstract simplicial complex). Such a homeomorphism is referred to as a ''triangulation'' of the given space. Many topological spaces of interest can be triangulated, including every smooth manifold (Cairns and Whitehead). Simplicial homology is defined by a simple recipe for any abstract simplicial complex. It is a remarkable fact that simplic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Homotopy Theory
In mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology but nowadays is studied as an independent discipline. Besides algebraic topology, the theory has also been used in other areas of mathematics such as algebraic geometry (e.g., A1 homotopy theory) and category theory (specifically the study of higher categories). Concepts Spaces and maps In homotopy theory and algebraic topology, the word "space" denotes a topological space. In order to avoid pathologies, one rarely works with arbitrary spaces; instead, one requires spaces to meet extra constraints, such as being compactly generated, or Hausdorff, or a CW complex. In the same vein as above, a "map" is a continuous function, possibly with some extra constraints. Often, one works with a pointed space -- that is, a space with a "distinguished point", called a basepoint. A pointed map is then a map which preserv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]