Simple Shear
   HOME





Simple Shear
Simple shear is a deformation in which parallel planes in a material remain parallel and maintain a constant distance, while translating relative to each other. In fluid mechanics In fluid mechanics, simple shear is a special case of deformation where only one component of velocity vectors has a non-zero value: :V_x=f(x,y) :V_y=V_z=0 And the gradient of velocity is constant and perpendicular to the velocity itself: :\frac = \dot \gamma , where \dot \gamma is the shear rate and: :\frac = \frac = 0 The displacement gradient tensor Γ for this deformation has only one nonzero term: :\Gamma = \begin 0 & & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end Simple shear with the rate \dot \gamma is the combination of pure shear strain with the rate of \dot \gamma and rotation with the rate of \dot \gamma: :\Gamma = \begin \underbrace \begin 0 & & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end \\ \mbox\end = \begin \underbrace \begin 0 & & 0 \\ & 0 & 0 \\ 0 & 0 & 0 \end \\ \mbox \end + \b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Base Isolation
Seismic base isolation, also known as base isolation, or base isolation system, is one of the most popular means of protecting a structure against earthquake forces. It is a collection of structural elements which should substantially Coupling (physics), decouple a superstructure from its Substructure (engineering), substructure that is in turn resting on the shaking ground, thus protecting a building or non-building structure's integrity. Base isolation is one of the most powerful tools of earthquake engineering pertaining to the passive structural vibration control technologies. The isolation can be obtained by the use of various techniques like rubber bearings, friction bearings, ball bearings, spring systems and other means. It is meant to enable a building or non-building structure to survive a potentially devastating seismic impact (mechanics), impact through a proper initial design or subsequent modifications. In some cases, application of base isolation can raise both ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pure Shear
In mechanics and geology, pure shear is a three-dimensional homogeneous flattening of a body. It is an example of irrotational strain in which body is elongated in one direction while being shortened perpendicularly. For soft materials, such as rubber, a strain state of pure shear is often used for characterizing hyperelastic and fracture mechanical behaviour. Pure shear is differentiated from simple shear in that pure shear involves no rigid body rotation. The deformation gradient for pure shear is given by: F = \begin1&\gamma&0 \\\gamma&1&0\\0&0&1\end Note that this gives a Green-Lagrange strain of: E = \frac\begin\gamma^2&2\gamma&0\\2\gamma&\gamma^2&0\\0&0&0\end Here there is no rotation occurring, which can be seen from the equal off-diagonal components of the strain tensor. The linear approximation to the Green-Lagrange strain shows that the small strain tensor is: \epsilon = \frac\begin0&2\gamma&0\\2\gamma&0&0\\0&0&0\end which has only shearing components. See ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finite Strain Theory
In continuum mechanics, the finite strain theory—also called large strain theory, or large deformation theory—deals with deformations in which strains and/or rotations are large enough to invalidate assumptions inherent in infinitesimal strain theory. In this case, the undeformed and deformed configurations of the continuum are significantly different, requiring a clear distinction between them. This is commonly the case with elastomers, plastically deforming materials and other fluids and biological soft tissue. Displacement field Deformation gradient tensor The deformation gradient tensor \mathbf F(\mathbf X,t) = F_ \mathbf e_j \otimes \mathbf I_K is related to both the reference and current configuration, as seen by the unit vectors \mathbf e_j and \mathbf I_K\,\!, therefore it is a '' two-point tensor''. Two types of deformation gradient tensor may be defined. Due to the assumption of continuity of \chi(\mathbf X,t)\,\!, \mathbf F has the inverse \mathbf H = \ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infinitesimal Strain Theory
In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller (indeed, infinitesimally smaller) than any relevant dimension of the body; so that its geometry and the constitutive properties of the material (such as density and stiffness) at each point of space can be assumed to be unchanged by the deformation. With this assumption, the equations of continuum mechanics are considerably simplified. This approach may also be called small deformation theory, small displacement theory, or small displacement-gradient theory. It is contrasted with the finite strain theory where the opposite assumption is made. The infinitesimal strain theory is commonly adopted in civil and mechanical engineering for the stress analysis of structures built from relatively stiff elastic materials like concrete and steel, since a common goal in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Poisson's Ratio
In materials science and solid mechanics, Poisson's ratio (symbol: ( nu)) is a measure of the Poisson effect, the deformation (expansion or contraction) of a material in directions perpendicular to the specific direction of loading. The value of Poisson's ratio is the negative of the ratio of transverse strain to axial strain. For small values of these changes, is the amount of transversal elongation divided by the amount of axial compression. Most materials have Poisson's ratio values ranging between 0.0 and 0.5. For soft materials, such as rubber, where the bulk modulus is much higher than the shear modulus, Poisson's ratio is near 0.5. For open-cell polymer foams, Poisson's ratio is near zero, since the cells tend to collapse in compression. Many typical solids have Poisson's ratios in the range of 0.2 to 0.3. The ratio is named after the French mathematician and physicist Siméon Poisson. Origin Poisson's ratio is a measure of the Poisson effect, the phenomenon in whi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Young's Modulus
Young's modulus (or the Young modulus) is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise. It is the modulus of elasticity for tension or axial compression. Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material. Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler. The first experiments that used the concept of Young's modulus in its modern form were performed by the Italian scientist Giordano Riccati in 1782, pre-dating Young's work by 25 years. The term modulus is derived from the Latin root term '' modus'', which means ''measure''. Definition Young's modulus, E, quantifies the relationship between tensile or compressive stress \sigma (force per unit ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shear Modulus
In materials science, shear modulus or modulus of rigidity, denoted by ''G'', or sometimes ''S'' or ''μ'', is a measure of the Elasticity (physics), elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear strain: :G \ \stackrel\ \frac = \frac = \frac where :\tau_ = F/A \, = shear stress :F is the force which acts :A is the area on which the force acts :\gamma_ = shear strain. In engineering :=\Delta x/l = \tan \theta , elsewhere := \theta :\Delta x is the transverse displacement :l is the initial length of the area. The derived SI unit of shear modulus is the Pascal (unit), pascal (Pa), although it is usually expressed in Pascal (unit), gigapascals (GPa) or in thousand pounds per square inch (ksi). Its dimensional analysis, dimensional form is M1L−1T−2, replacing ''force'' by ''mass'' times ''acceleration''. Explanation The shear modulus is one of several quantities for measuring the stiffness of materials. All of them arise in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shear Strain
In mechanics, strain is defined as relative deformation, compared to a position configuration. Different equivalent choices may be made for the expression of a strain field depending on whether it is defined with respect to the initial or the final configuration of the body and on whether the metric tensor or its dual is considered. Strain has dimension of a length ratio, with SI base units of meter per meter (m/m). Hence strains are dimensionless and are usually expressed as a decimal fraction or a percentage. Parts-per notation is also used, e.g., parts per million or parts per billion (sometimes called "microstrains" and "nanostrains", respectively), corresponding to μm/m and nm/m. Strain can be formulated as the spatial derivative of displacement: \boldsymbol \doteq \cfrac\left(\mathbf - \mathbf\right) = \boldsymbol'- \boldsymbol, where is the identity tensor. The displacement of a body may be expressed in the form , where is the reference position of material poi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shear Stress
Shear stress (often denoted by , Greek alphabet, Greek: tau) is the component of stress (physics), stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. ''Normal stress'', on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts. General shear stress The formula to calculate average shear stress or force per unit area is: \tau = ,where is the force applied and is the cross-sectional area. The area involved corresponds to the material face (geometry), face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force. Other forms Wall shear stress Wall shear stress expresses the retarding force (per unit area) from a wall in the layers of a fluid flowing next to the wall. It is defined as:\tau_w := \mu\left.\frac\_,where is the dynamic viscosity, is the flow velocity, and is the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pure Shear
In mechanics and geology, pure shear is a three-dimensional homogeneous flattening of a body. It is an example of irrotational strain in which body is elongated in one direction while being shortened perpendicularly. For soft materials, such as rubber, a strain state of pure shear is often used for characterizing hyperelastic and fracture mechanical behaviour. Pure shear is differentiated from simple shear in that pure shear involves no rigid body rotation. The deformation gradient for pure shear is given by: F = \begin1&\gamma&0 \\\gamma&1&0\\0&0&1\end Note that this gives a Green-Lagrange strain of: E = \frac\begin\gamma^2&2\gamma&0\\2\gamma&\gamma^2&0\\0&0&0\end Here there is no rotation occurring, which can be seen from the equal off-diagonal components of the strain tensor. The linear approximation to the Green-Lagrange strain shows that the small strain tensor is: \epsilon = \frac\begin0&2\gamma&0\\2\gamma&0&0\\0&0&0\end which has only shearing components. See ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vibration Control
In earthquake engineering, vibration control is a set of technical means aimed to mitigate seismic impacts in building and non-building structures. All seismic vibration control devices may be classified as ''passive'', ''active'' or ''hybrid'' where: * ''passive control devices'' have no feedback capability between them, structural elements and the ground; * ''active control devices'' incorporate real-time recording instrumentation on the ground integrated with earthquake input processing equipment and actuators within the structure; * ''hybrid control devices'' have combined features of active and passive control systems. When ground seismic waves reach up and start to penetrate a base of a building, their energy flow density, due to reflections, reduces dramatically: usually, up to 90%. However, the remaining portions of the incident waves during a major earthquake still bear a huge devastating potential. After the seismic waves enter a superstructure, there is a number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]