Shortest Common Supersequence Problem
   HOME
*





Shortest Common Supersequence Problem
In computer science, the shortest common supersequence of two sequences X and Y is the shortest sequence which has X and Y as subsequences. This is a problem closely related to the longest common subsequence problem. Given two sequences X = and Y = , a sequence U = is a common supersequence of X and Y if items can be removed from U to produce X and Y. A shortest common supersequence (SCS) is a common supersequence of minimal length. In the shortest common supersequence problem, two sequences X and Y are given, and the task is to find a shortest possible common supersequence of these sequences. In general, an SCS is not unique. For two input sequences, an SCS can be formed from a longest common subsequence (LCS) easily. For example, the longest common subsequence of X ..m= abcbdab and Y ..n= bdcaba is Z ..L= bcba. By inserting the non-LCS symbols into Z while preserving their original order, we obtain a shortest common supersequence U ..S= abdcabdab. In particular, the equatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical disciplines (including the design and implementation of Computer architecture, hardware and Computer programming, software). Computer science is generally considered an area of research, academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing Vulnerability (computing), security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Progr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Subsequence
In mathematics, a subsequence of a given sequence is a sequence that can be derived from the given sequence by deleting some or no elements without changing the order of the remaining elements. For example, the sequence \langle A,B,D \rangle is a subsequence of \langle A,B,C,D,E,F \rangle obtained after removal of elements C, E, and F. The relation of one sequence being the subsequence of another is a preorder. Subsequences can contain consecutive elements which were not consecutive in the original sequence. A subsequence which consists of a consecutive run of elements from the original sequence, such as \langle B,C,D \rangle, from \langle A,B,C,D,E,F \rangle, is a substring. The substring is a refinement of the subsequence. The list of all subsequences for the word "apple" would be "''a''", "''ap''", "''al''", "''ae''", "''app''", "''apl''", "''ape''", "''ale''", "''appl''", "''appe''", "''aple''", "''apple''", "''p''", "''pp''", "''pl''", "''pe''", "''ppl''", "''ppe''", "''ple' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Longest Common Subsequence Problem
The longest common subsequence (LCS) problem is the problem of finding the longest subsequence common to all sequences in a set of sequences (often just two sequences). It differs from the longest common substring problem: unlike substrings, subsequences are not required to occupy consecutive positions within the original sequences. The longest common subsequence problem is a classic computer science problem, the basis of data comparison programs such as the diff utility, and has applications in computational linguistics and bioinformatics. It is also widely used by revision control systems such as Git for reconciling multiple changes made to a revision-controlled collection of files. For example, consider the sequences (ABCD) and (ACBAD). They have 5 length-2 common subsequences: (AB), (AC), (AD), (BD), and (CD); 2 length-3 common subsequences: (ABD) and (ACD); and no longer common subsequences. So (ABD) and (ACD) are their longest common subsequences. Complexity For the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Longest Common Subsequence
A longest common subsequence (LCS) is the longest subsequence common to all sequences in a set of sequences (often just two sequences). It differs from the longest common substring: unlike substrings, subsequences are not required to occupy consecutive positions within the original sequences. The problem of computing longest common subsequences is a classic computer science problem, the basis of data comparison programs such as the diff utility, and has applications in computational linguistics and bioinformatics. It is also widely used by revision control systems such as Git for reconciling multiple changes made to a revision-controlled collection of files. For example, consider the sequences (ABCD) and (ACBAD). They have 5 length-2 common subsequences: (AB), (AC), (AD), (BD), and (CD); 2 length-3 common subsequences: (ABD) and (ACD); and no longer common subsequences. So (ABD) and (ACD) are their longest common subsequences. Complexity For the general case of an arbitrar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dual Problem
In mathematical optimization theory, duality or the duality principle is the principle that optimization problems may be viewed from either of two perspectives, the primal problem or the dual problem. If the primal is a minimization problem then the dual is a maximization problem (and vice versa). Any feasible solution to the primal (minimization) problem is at least as large as any feasible solution to the dual (maximization) problem. Therefore, the solution to the primal is an upper bound to the solution of the dual, and the solution of the dual is a lower bound to the solution of the primal. This fact is called weak duality. In general, the optimal values of the primal and dual problems need not be equal. Their difference is called the duality gap. For convex optimization problems, the duality gap is zero under a constraint qualification condition. This fact is called strong duality. Dual problem Usually the term "dual problem" refers to the ''Lagrangian dual problem'' but other ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

NP-hard
In computational complexity theory, NP-hardness ( non-deterministic polynomial-time hardness) is the defining property of a class of problems that are informally "at least as hard as the hardest problems in NP". A simple example of an NP-hard problem is the subset sum problem. A more precise specification is: a problem ''H'' is NP-hard when every problem ''L'' in NP can be reduced in polynomial time to ''H''; that is, assuming a solution for ''H'' takes 1 unit time, ''H''s solution can be used to solve ''L'' in polynomial time. As a consequence, finding a polynomial time algorithm to solve any NP-hard problem would give polynomial time algorithms for all the problems in NP. As it is suspected that P≠NP, it is unlikely that such an algorithm exists. It is suspected that there are no polynomial-time algorithms for NP-hard problems, but that has not been proven. Moreover, the class P, in which all problems can be solved in polynomial time, is contained in the NP class. Defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Set Cover Problem
The set cover problem is a classical question in combinatorics, computer science, operations research, and complexity theory. It is one of Karp's 21 NP-complete problems shown to be NP-complete in 1972. Given a set of elements (called the universe) and a collection of sets whose union equals the universe, the set cover problem is to identify the smallest sub-collection of whose union equals the universe. For example, consider the universe and the collection of sets Clearly the union of is . However, we can cover all of the elements with the following, smaller number of sets: More formally, given a universe \mathcal and a family \mathcal of subsets of \mathcal, a ''cover'' is a subfamily \mathcal\subseteq\mathcal of sets whose union is \mathcal. In the set covering decision problem, the input is a pair (\mathcal,\mathcal) and an integer k; the question is whether there is a set covering of size k or less. In the set covering optimization problem, the input is a pair (\ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Approximation Algorithm
In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms naturally arise in the field of theoretical computer science as a consequence of the widely believed P ≠ NP conjecture. Under this conjecture, a wide class of optimization problems cannot be solved exactly in polynomial time. The field of approximation algorithms, therefore, tries to understand how closely it is possible to approximate optimal solutions to such problems in polynomial time. In an overwhelming majority of the cases, the guarantee of such algorithms is a multiplicative one expressed as an approximation ratio or approximation factor i.e., the optimal solution is always guaranteed to be within a (predetermined) multiplicative factor of the returned solution. However, there are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Problems On Strings
A problem is a difficulty which may be resolved by problem solving. Problem(s) or The Problem may also refer to: People * Problem (rapper), (born 1985) American rapper Books * ''Problems'' (Aristotle), an Aristotelian (or pseudo-Aristotelian) collection of problems in question and answer form * ''The Problem'' (play), by A. R. Gurney Film and TV * ''Problems'' (TV series), a 2012 Australian comedy television series. * ''The Problem with Jon Stewart'', an American current affairs television series. Music Albums * ''The Problem'' (album), by Mathematics * ''Problems'' (album), a 2019 album by The Get Up Kids Songs * "Problem" (Ariana Grande song), 2014 * "Problem" (Natalia Kills song), 2013 * "Problems" (song), a 1958 song by The Everly Brothers * "Fuckin' Problems", sometimes known as "Problems", a 2012 song by A$AP Rocky * "Problem", by Becky G * "Problem", by Erin Bowman * "Problem", by Šarlo Akrobata from '' Bistriji ili tuplji čovek biva kad...'' * "Problems", by A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science. Combinatorics is well known for the breadth of the problems it tackles. Combinatorial problems arise in many areas of pure mathematics, notably in algebra, probability theory, topology, and geometry, as well as in its many application areas. Many combinatorial questions have historically been considered in isolation, giving an ''ad hoc'' solution to a problem arising in some mathematical context. In the later twentieth century, however, powerful and general theoretical methods were developed, making combinatorics into an independent branch of mathematics in its own right. One of the oldest and most accessible parts of combinatorics is gra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Formal Languages
In logic, mathematics, computer science, and linguistics, a formal language consists of string (computer science), words whose symbol (formal), letters are taken from an alphabet (formal languages), alphabet and are well-formedness, well-formed according to a specific set of rules. The alphabet of a formal language consists of symbols, letters, or tokens that concatenate into strings of the language. Each string concatenated from symbols of this alphabet is called a word, and the words that belong to a particular formal language are sometimes called ''well-formed words'' or ''well-formed formulas''. A formal language is often defined by means of a formal grammar such as a regular grammar or context-free grammar, which consists of its formation rules. In computer science, formal languages are used among others as the basis for defining the grammar of programming languages and formalized versions of subsets of natural languages in which the words of the language represent concepts ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dynamic Programming
Dynamic programming is both a mathematical optimization method and a computer programming method. The method was developed by Richard Bellman in the 1950s and has found applications in numerous fields, from aerospace engineering to economics. In both contexts it refers to simplifying a complicated problem by breaking it down into simpler sub-problems in a recursive manner. While some decision problems cannot be taken apart this way, decisions that span several points in time do often break apart recursively. Likewise, in computer science, if a problem can be solved optimally by breaking it into sub-problems and then recursively finding the optimal solutions to the sub-problems, then it is said to have ''optimal substructure''. If sub-problems can be nested recursively inside larger problems, so that dynamic programming methods are applicable, then there is a relation between the value of the larger problem and the values of the sub-problems.Cormen, T. H.; Leiserson, C. E.; Rives ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]