Semifluxon
   HOME
*





Semifluxon
In superconductivity, a semifluxon is a half integer vortex of supercurrent carrying the magnetic flux equal to the half of the magnetic flux quantum . Semifluxons exist in the 0-π long Josephson junctions at the boundary between 0 and π regions. This 0-π boundary creates a π discontinuity of the Josephson phase. The junction reacts to this discontinuity by creating a semifluxon. Vortex's supercurrent circulates around 0-π boundary. In addition to semifluxon, there exist also an antisemifluxon. It carries the flux and its supercurrent circulates in the opposite direction. Mathematically, a semifluxon can be constructed by joining two tails of conventional (integer) fluxon (kink of the sine-Gordon equation) at the 0-π boundary. Semifluxon is a particular example of the ''fractional vortex pinned at the phase discontinuity'', see Fractional vortices for details. For the first time the semifluxons were observed at the tricrystal grain boundaries in d-wave superconductors and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fractional Vortices
In a standard superconductor, described by a complex field fermionic condensate wave function (denoted , \Psi, e^), vortices carry quantized magnetic fields because the condensate wave function , \Psi, e^ is invariant to increments of the phase \phi by 2\pi. There a winding of the phase by 2\pi creates a vortex which carries one flux quantum. See quantum vortex. The term Fractional vortex is used for two kinds of very different quantum vortices which occur when: (i) A physical system allows phase windings different from 2\pi \times \mathit, i.e. non-integer or fractional phase winding. Quantum mechanics prohibits it in a uniform ordinary superconductor, but it becomes possible in an inhomogeneous system, for example, if a vortex is placed on a boundary between two superconductors which are connected only by an extremely weak link (also called a Josephson junction); such a situation also occurs in some cases in polycrystalline samples on grain boundaries etc. At such superconduc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Josephson Junction
In physics, the Josephson effect is a phenomenon that occurs when two superconductors are placed in proximity, with some barrier or restriction between them. It is an example of a macroscopic quantum phenomenon, where the effects of quantum mechanics are observable at ordinary, rather than atomic, scale. The Josephson effect has many practical applications because it exhibits a precise relationship between different physics quantities, such as voltage and frequency, facilitating highly accurate measurements. The Josephson effect produces a current, known as a supercurrent, that flows continuously without any voltage applied, across a device known as a Josephson junction (JJ). These consist of two or more superconductors coupled by a weak link. The weak link can be a thin insulating barrier (known as a superconductor–insulator–superconductor junction, or S-I-S), a short section of non-superconducting metal (S-N-S), or a physical constriction that weakens the superconductivit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pi Josephson Junction
A Josephson junction is a quantum mechanical device which is made of two superconducting electrodes separated by a barrier (thin insulating tunnel barrier, normal metal, semiconductor, ferromagnet, etc.). A Josephson junction is a Josephson junction in which the Josephson phase ''φ'' equals in the ground state, i.e. when no external current or magnetic field is applied. Background The supercurrent ''I''''s'' through a Josephson junction (JJ) is generally given by ''I''''s'' = ''I''''c''sin(''φ''), where φ is the phase difference of the superconducting wave functions of the two electrodes, i.e. the Josephson phase. The critical current ''I''''c'' is the maximum supercurrent that can exist through the Josephson junction. In experiment, one usually causes some current through the Josephson junction and the junction reacts by changing the Josephson phase. From the above formula it is clear that the phase ''φ'' = arcsin(''I''/''I''''c''), where ''I'' is the applied (super)curr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Varphi Josephson Junction
A φ Josephson junction (pronounced '' phi Josephson junction'') is a particular type of the Josephson junction, which has a non-zero Josephson phase φ across it in the ground state. A π Josephson junction, which has the minimum energy corresponding to the phase of π, is a specific example of it. Introduction The Josephson energy U depends on the superconducting phase difference (Josephson phase) \phi periodically, with the period 2\pi. Therefore, let us focus only on one period, e.g. -\pi, where is the critical current of the junction, and \Phi_0 is the flux quantum, is a good example of conventional U(\phi). Instead, when the Josephson energy U(\phi) has a minimum (or more than one minimum per period) at \phi\neq0, these minimum (minima) correspond to the lowest energy states (ground states) of the junction and one speaks about "φ Josephson junction". Consider two examples. First, consider the junction with the Josephson energy U(\phi) having two minima at \phi=\pm\va ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Superconductivity
Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike an ordinary metallic conductor, whose resistance decreases gradually as its temperature is lowered even down to near absolute zero, a superconductor has a characteristic critical temperature below which the resistance drops abruptly to zero. An electric current through a loop of superconducting wire can persist indefinitely with no power source. The superconductivity phenomenon was discovered in 1911 by Dutch physicist Heike Kamerlingh Onnes. Like ferromagnetism and atomic spectral lines, superconductivity is a phenomenon which can only be explained by quantum mechanics. It is characterized by the Meissner effect, the complete ejection of magnetic field lines from the interior of the superconductor during its transitions into the sup ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vortex
In fluid dynamics, a vortex ( : vortices or vortexes) is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in the wake of a boat, and the winds surrounding a tropical cyclone, tornado or dust devil. Vortices are a major component of turbulent flow. The distribution of velocity, vorticity (the curl of the flow velocity), as well as the concept of circulation are used to characterise vortices. In most vortices, the fluid flow velocity is greatest next to its axis and decreases in inverse proportion to the distance from the axis. In the absence of external forces, viscous friction within the fluid tends to organise the flow into a collection of irrotational vortices, possibly superimposed to larger-scale flows, including larger-scale vortices. Once formed, vortices can move, stretch, twist, and interact in complex ways. A moving vortex carries s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Supercurrent
A supercurrent is a superconducting current, that is, electric current which flows without dissipation in a superconductor. Under certain conditions, an electric current can also flow without dissipation in microscopically small non-superconducting metals. However, such currents are not called supercurrents, but persistent currents. See also * Josephson effect In physics, the Josephson effect is a phenomenon that occurs when two superconductors are placed in proximity, with some barrier or restriction between them. It is an example of a macroscopic quantum phenomenon, where the effects of quantum mech ... References Superconductivity {{electromagnetism-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Magnetic Flux
In physics, specifically electromagnetism, the magnetic flux through a surface is the surface integral of the normal component of the magnetic field B over that surface. It is usually denoted or . The SI unit of magnetic flux is the weber (Wb; in derived units, volt–seconds), and the CGS unit is the maxwell. Magnetic flux is usually measured with a fluxmeter, which contains measuring coils and electronics, that evaluates the change of voltage in the measuring coils to calculate the measurement of magnetic flux. Description The magnetic interaction is described in terms of a vector field, where each point in space is associated with a vector that determines what force a moving charge would experience at that point (see Lorentz force). Since a vector field is quite difficult to visualize at first, in elementary physics one may instead visualize this field with field lines. The magnetic flux through some surface, in this simplified picture, is proportional to the num ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Magnetic Flux Quantum
The magnetic flux, represented by the symbol , threading some contour or loop is defined as the magnetic field multiplied by the loop area , i.e. . Both and can be arbitrary, meaning can be as well. However, if one deals with the superconducting loop or a hole in a bulk superconductor, the magnetic flux threading such a hole/loop is actually quantized. The (superconducting) magnetic flux quantum ≈ is a combination of fundamental physical constants: the Planck constant and the electron charge . Its value is, therefore, the same for any superconductor. The phenomenon of flux quantization was discovered experimentally by B. S. Deaver and W. M. Fairbank and, independently, by R. Doll and M. Näbauer, in 1961. The quantization of magnetic flux is closely related to the Little–Parks effect, but was predicted earlier by Fritz London in 1948 using a phenomenological model. The inverse of the flux quantum, , is called the Josephson constant, and is denoted J. It is the constan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Long Josephson Junction
In superconductivity, a long Josephson junction (LJJ) is a Josephson junction which has one or more dimensions longer than the Josephson penetration depth \lambda_J. This definition is not strict. In terms of underlying model a ''short Josephson junction'' is characterized by the Josephson phase \phi(t), which is only a function of time, but not of coordinates i.e. the Josephson junction is assumed to be point-like in space. In contrast, in a long Josephson junction the Josephson phase can be a function of one or two spatial coordinates, i.e., \phi(x,t) or \phi(x,y,t). Simple model: the sine-Gordon equation The simplest and the most frequently used model which describes the dynamics of the Josephson phase \phi in LJJ is the so-called perturbed sine-Gordon equation. For the case of 1D LJJ it looks like: where subscripts x and t denote partial derivatives with respect to x and t, \lambda_J is the Josephson penetration depth, \omega_p is the Josephson plasma frequency, \omega_c is t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]