Schwarz Triangle Function
   HOME
*



picture info

Schwarz Triangle Function
In complex analysis, the Schwarz triangle function or Schwarz s-function is a function that conformally maps the upper half plane to a triangle in the upper half plane having lines or circular arcs for edges. The target triangle is not necessarily a Schwarz triangle, although that is the most mathematically interesting case. When that triangle is a non-overlapping Schwarz triangle, i.e. a Möbius triangle, the inverse of the Schwarz triangle function is a single-valued automorphic function for that triangle's triangle group. More specifically, it is a modular function. Formula Let ''πα'', ''πβ'', and ''πγ'' be the interior angles at the vertices of the triangle in radians. Each of ''α'', ''β'', and ''γ'' may take values between 0 and 1 inclusive. Following Nehari, these angles are in clockwise order, with the vertex having angle ''πα'' at the origin and the vertex having angle ''πγ'' lying on the real line. The Schwarz triangle function can be given in terms of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Schwarz Triangle Function
In complex analysis, the Schwarz triangle function or Schwarz s-function is a function that conformally maps the upper half plane to a triangle in the upper half plane having lines or circular arcs for edges. The target triangle is not necessarily a Schwarz triangle, although that is the most mathematically interesting case. When that triangle is a non-overlapping Schwarz triangle, i.e. a Möbius triangle, the inverse of the Schwarz triangle function is a single-valued automorphic function for that triangle's triangle group. More specifically, it is a modular function. Formula Let ''πα'', ''πβ'', and ''πγ'' be the interior angles at the vertices of the triangle in radians. Each of ''α'', ''β'', and ''γ'' may take values between 0 and 1 inclusive. Following Nehari, these angles are in clockwise order, with the vertex having angle ''πα'' at the origin and the vertex having angle ''πγ'' lying on the real line. The Schwarz triangle function can be given in terms of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schwarzian Derivative
In mathematics, the Schwarzian derivative is an operator similar to the derivative which is invariant under Möbius transformations. Thus, it occurs in the theory of the complex projective line, and in particular, in the theory of modular forms and hypergeometric functions. It plays an important role in the theory of univalent functions, conformal mapping and Teichmüller spaces. It is named after the German mathematician Hermann Schwarz. Definition The Schwarzian derivative of a holomorphic function of one complex variable is defined by : (Sf)(z) = \left( \frac\right)' - \frac\left(\right)^2 = \frac-\frac\left(\right)^2. The same formula also defines the Schwarzian derivative of a function of one real variable. The alternative notation :\ = (Sf)(z) is frequently used. Properties The Schwarzian derivative of any Möbius transformation : g(z) = \frac is zero. Conversely, the Möbius transformations are the only functions with this property. Thus, the Schwarzian der ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modular Lambda Function
In mathematics, the modular lambda function λ(τ)\lambda(\tau) is not a modular function (per the Wikipedia definition), but every modular function is a rational function in \lambda(\tau). Some authors use a non-equivalent definition of "modular functions". is a highly symmetric holomorphic function on the complex upper half-plane. It is invariant under the fractional linear action of the congruence group Γ(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the modular curve ''X''(2). Over any point τ, its value can be described as a cross ratio of the branch points of a ramified double cover of the projective line by the elliptic curve \mathbb/\langle 1, \tau \rangle, where the map is defined as the quotient by the minus;1involution. The q-expansion, where q = e^ is the nome, is given by: : \lambda(\tau) = 16q - 128q^2 + 704 q^3 - 3072q^4 + 11488q^5 - 38400q^6 + \dots. By symmetrizing the lambda function under the canon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complete Elliptic Integral Of The First Kind
In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler (). Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse. Modern mathematics defines an "elliptic integral" as any function which can be expressed in the form f(x) = \int_^ R \left(t, \sqrt \right) \, dt, where is a rational function of its two arguments, is a polynomial of degree 3 or 4 with no repeated roots, and is a constant. In general, integrals in this form cannot be expressed in terms of elementary functions. Exceptions to this general rule are when has repeated roots, or when contains no odd powers of or if the integral is pseudo-elliptic. However, with the appropriate reduction formula, every elliptic integral can be brought into a form that involves integrals over rational functions and the three Legend ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ideal Triangle
In hyperbolic geometry an ideal triangle is a hyperbolic triangle whose three vertices all are ideal points. Ideal triangles are also sometimes called ''triply asymptotic triangles'' or ''trebly asymptotic triangles''. The vertices are sometimes called ideal vertices. All ideal triangles are congruent. Properties Ideal triangles have the following properties: * All ideal triangles are congruent to each other. * The interior angles of an ideal triangle are all zero. * An ideal triangle has infinite perimeter. * An ideal triangle is the largest possible triangle in hyperbolic geometry. In the standard hyperbolic plane (a surface where the constant Gaussian curvature is −1) we also have the following properties: * Any ideal triangle has area π. Distances in an ideal triangle * The inscribed circle to an ideal triangle has radius r=\ln\sqrt = \frac \ln 3 = \operatorname\frac = 2 \operatorname(2- \sqrt) = = \operatorname\frac\sqrt = \operatorname\frac\sqrt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elliptical Function
In the mathematical field of complex analysis, elliptic functions are a special kind of meromorphic functions, that satisfy two periodicity conditions. They are named elliptic functions because they come from elliptic integrals. Originally those integrals occurred at the calculation of the arc length of an ellipse. Important elliptic functions are Jacobi elliptic functions and the Weierstrass \wp-function. Further development of this theory led to hyperelliptic functions and modular forms. Definition A meromorphic function is called an elliptic function, if there are two \mathbb- linear independent complex numbers \omega_1,\omega_2\in\mathbb such that : f(z + \omega_1) = f(z) and f(z + \omega_2) = f(z), \quad \forall z\in\mathbb. So elliptic functions have two periods and are therefore also called ''doubly periodic''. Period lattice and fundamental domain Iff is an elliptic function with periods \omega_1,\omega_2 it also holds that : f(z+\gamma)=f(z) for every lin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rational Function
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers; they may be taken in any field ''K''. In this case, one speaks of a rational function and a rational fraction ''over K''. The values of the variables may be taken in any field ''L'' containing ''K''. Then the domain of the function is the set of the values of the variables for which the denominator is not zero, and the codomain is ''L''. The set of rational functions over a field ''K'' is a field, the field of fractions of the ring of the polynomial functions over ''K''. Definitions A function f(x) is called a rational function if and only if it can be written in the form : f(x) = \frac where P\, and Q\, are polynomial functions of x\, and Q\, is not the zero function. The domain of f\, is the set of all values of x\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Big O Notation
Big ''O'' notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by Paul Bachmann, Edmund Landau, and others, collectively called Bachmann–Landau notation or asymptotic notation. The letter O was chosen by Bachmann to stand for ''Ordnung'', meaning the order of approximation. In computer science, big O notation is used to classify algorithms according to how their run time or space requirements grow as the input size grows. In analytic number theory, big O notation is often used to express a bound on the difference between an arithmetical function and a better understood approximation; a famous example of such a difference is the remainder term in the prime number theorem. Big O notation is also used in many other fields to provide similar estimates. Big O notation characterizes functions according to their growth rates: d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gamma Function
In mathematics, the gamma function (represented by , the capital letter gamma from the Greek alphabet) is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer , \Gamma(n) = (n-1)!\,. Derived by Daniel Bernoulli, for complex numbers with a positive real part, the gamma function is defined via a convergent improper integral: \Gamma(z) = \int_0^\infty t^ e^\,dt, \ \qquad \Re(z) > 0\,. The gamma function then is defined as the analytic continuation of this integral function to a meromorphic function that is holomorphic in the whole complex plane except zero and the negative integers, where the function has simple poles. The gamma function has no zeroes, so the reciprocal gamma function is an entire function. In fact, the gamma function corresponds to the Mellin transform of the negative exponential function: \Gamma(z) = \mathcal M \ (z ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Regular Singular Points
In mathematics, in the theory of ordinary differential equations in the complex plane \Complex, the points of \Complex are classified into ''ordinary points'', at which the equation's coefficients are analytic functions, and ''singular points'', at which some coefficient has a singularity. Then amongst singular points, an important distinction is made between a regular singular point, where the growth of solutions is bounded (in any small sector) by an algebraic function, and an irregular singular point, where the full solution set requires functions with higher growth rates. This distinction occurs, for example, between the hypergeometric equation, with three regular singular points, and the Bessel equation which is in a sense a limiting case, but where the analytic properties are substantially different. Formal definitions More precisely, consider an ordinary linear differential equation of -th order \sum_^n p_i(z) f^ (z) = 0 with meromorphic functions. One can assume that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Möbius Transformation
In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form f(z) = \frac of one complex variable ''z''; here the coefficients ''a'', ''b'', ''c'', ''d'' are complex numbers satisfying ''ad'' − ''bc'' ≠ 0. Geometrically, a Möbius transformation can be obtained by first performing stereographic projection from the plane to the unit two-sphere, rotating and moving the sphere to a new location and orientation in space, and then performing stereographic projection (from the new position of the sphere) to the plane. These transformations preserve angles, map every straight line to a line or circle, and map every circle to a line or circle. The Möbius transformations are the projective transformations of the complex projective line. They form a group called the Möbius group, which is the projective linear group PGL(2,C). Together with its subgroups, it has numerous applications in mathematics and physics. Möbius transfor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]