Schubert Variety
   HOME
*





Schubert Variety
In algebraic geometry, a Schubert variety is a certain subvariety of a Grassmannian, usually with singular points. Like a Grassmannian, it is a kind of moduli space, whose points correspond to certain kinds of subspaces ''V'', specified using linear algebra, inside a fixed vector subspace ''W''. Here ''W'' may be a vector space over an arbitrary field, though most commonly over the complex numbers. A typical example is the set ''X'' whose points correspond to those 2-dimensional subspaces ''V'' of a 4-dimensional vector space ''W'', such that ''V'' non-trivially intersects a fixed (reference) 2-dimensional subspace ''W''2: :X \ =\ \. Over the real number field, this can be pictured in usual ''xyz''-space as follows. Replacing subspaces with their corresponding projective spaces, and intersecting with an affine coordinate patch of \mathbb(W), we obtain an open subset ''X''° ⊂ ''X''. This is isomorphic to the set of all lines ''L'' (not necessarily through the origin) which m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Smooth Scheme
In algebraic geometry, a smooth scheme over a field is a scheme which is well approximated by affine space near any point. Smoothness is one way of making precise the notion of a scheme with no singular points. A special case is the notion of a smooth variety over a field. Smooth schemes play the role in algebraic geometry of manifolds in topology. Definition First, let ''X'' be an affine scheme of finite type over a field ''k''. Equivalently, ''X'' has a closed immersion into affine space ''An'' over ''k'' for some natural number ''n''. Then ''X'' is the closed subscheme defined by some equations ''g''1 = 0, ..., ''g''''r'' = 0, where each ''gi'' is in the polynomial ring ''k'' 'x''1,..., ''x''''n'' The affine scheme ''X'' is smooth of dimension ''m'' over ''k'' if ''X'' has dimension at least ''m'' in a neighborhood of each point, and the matrix of derivatives (∂''g''''i''/∂''x''''j'') has rank at least ''n''−''m'' everywhere on ''X''. (It follows that ''X'' has dimension ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


William Fulton (mathematician)
William Edgar Fulton (born August 29, 1939) is an American mathematician, specializing in algebraic geometry. Education and career He received his undergraduate degree from Brown University in 1961 and his doctorate from Princeton University in 1966. His Ph.D. thesis, written under the supervision of Gerard Washnitzer, was on ''The fundamental group of an algebraic curve''. Fulton worked at Princeton and Brandeis University from 1965 until 1970, when he began teaching at Brown. In 1987 he moved to the University of Chicago.Announcement of the
1996 Steele Prizes at the American Mathematical Society web site, accessed July 15, 2009.
He is, as of 2011, a professor at the University of Michigan. Fulton is known as the author or coauthor of a number of popular texts, including ''Algebraic Curves'' and ''Representation Theory'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Representation Theory
Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication). The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories. The algebraic objects amenable to such a description include groups, associative algebras and Lie algebras. The most prominent of these (and historically the first) is the representation theory of groups, in which elements of a group are represented by invertible matrices in such a way that the group operation i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches of algebraic topology Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy gro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert Problems
Hilbert's problems are 23 problems in mathematics published by German mathematician David Hilbert in 1900. They were all unsolved at the time, and several proved to be very influential for 20th-century mathematics. Hilbert presented ten of the problems (1, 2, 6, 7, 8, 13, 16, 19, 21, and 22) at the Paris conference of the International Congress of Mathematicians, speaking on August 8 at the Sorbonne. The complete list of 23 problems was published later, in English translation in 1902 by Mary Frances Winston Newson in the ''Bulletin of the American Mathematical Society''. Earlier publications (in the original German) appeared in and Nature and influence of the problems Hilbert's problems ranged greatly in topic and precision. Some of them, like the 3rd problem, which was the first to be solved, or the 8th problem (the Riemann hypothesis), which still remains unresolved, were presented precisely enough to enable a clear affirmative or negative answer. For other problems, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilbert's Fifteenth Problem
Hilbert's fifteenth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by David Hilbert. The problem is to put Schubert's enumerative calculus on a rigorous foundation. Introduction Schubert calculus is the intersection theory of the 19th century, together with applications to enumerative geometry. Justifying this calculus was the content of Hilbert's 15th problem, and was also the major topic of the 20 century algebraic geometry.Hilbert, David, "Mathematische Probleme" Göttinger Nachrichten, (1900), pp. 253-297, and in Archiv der Mathematik und Physik, (3) 1 (1901), 44-63 and 213-237. Published in English translation by Dr. Maby Winton Newson, Bulletin of the American Mathematical Society 8 (1902), 437-47
.
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

David Hilbert
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many areas, including invariant theory, the calculus of variations, commutative algebra, algebraic number theory, the foundations of geometry, spectral theory of operators and its application to integral equations, mathematical physics, and the foundations of mathematics (particularly proof theory). Hilbert adopted and defended Georg Cantor's set theory and transfinite numbers. In 1900, he presented a collection of problems that set the course for much of the mathematical research of the 20th century. Hilbert and his students contributed significantly to establishing rigor and developed important tools used in modern mathematical physics. Hilbert is known as one of the founders of proof theory and mathematical logic. Life Early life and edu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Enumerative Geometry
In mathematics, enumerative geometry is the branch of algebraic geometry concerned with counting numbers of solutions to geometric questions, mainly by means of intersection theory. History The problem of Apollonius is one of the earliest examples of enumerative geometry. This problem asks for the number and construction of circles that are tangent to three given circles, points or lines. In general, the problem for three given circles has eight solutions, which can be seen as 23, each tangency condition imposing a quadratic condition on the space of circles. However, for special arrangements of the given circles, the number of solutions may also be any integer from 0 (no solutions) to six; there is no arrangement for which there are seven solutions to Apollonius' problem. Key tools A number of tools, ranging from the elementary to the more advanced, include: * Dimension counting * Bézout's theorem * Schubert calculus, and more generally characteristic classes in cohomology ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hieronymus Georg Zeuthen
Hieronymus Georg Zeuthen (15 February 1839 – 6 January 1920) was a Danish mathematician. He is known for work on the enumerative geometry of conic sections, algebraic surfaces, and history of mathematics. Biography Zeuthen was born in Grimstrup near Varde where his father was a minister. In 1849, his father moved to a church in Sorø where Zeuthen began his secondary schooling. In 1857 he entered the University of Copenhagen to study mathematics and graduated with a master's degree in 1862. Following this he earned a scholarship to study abroad, and decided to visit Paris where he studied geometry with Michel Chasles. After returning to Copenhagen, Zeuthen submitted his doctoral dissertation on a new method to determine the characteristics of conic systems in 1865. Enumerative geometry remained his focus up until 1875. In 1871 he was appointed as an extraordinary professor at the University of Copenhagen, as well as becoming an editor of ''Matematisk Tidsskrift'', a position ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hermann Schubert
__NOTOC__ Hermann Cäsar Hannibal Schubert (22 May 1848 – 20 July 1911) was a German mathematician. Schubert was one of the leading developers of enumerative geometry, which considers those parts of algebraic geometry that involve a finite number of solutions. In 1874, Schubert won a prize for solving a question posed by Zeuthen. Schubert calculus was named after him. Schubert tutored Adolf Hurwitz at the Realgymnasium Andreanum in Hildesheim, Hanover, and arranged for Hurwitz to study under Felix Klein at University. See also * Schubert cycle or Schubert variety * Schubert polynomial In mathematics, Schubert polynomials are generalizations of Schur polynomials that represent cohomology classes of Schubert cycles in flag varieties. They were introduced by and are named after Hermann Schubert. Background described the history ... Publications * References *Werner Burau and Bodo Renschuch, "Ergänzungen zur Biographie von Hermann Schubert," (Complements to the biogra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebra With A Straightening Law
In mathematics, a Hodge algebra or algebra with straightening law is a commutative algebra that is a free module over some ring ''R'', together with a given basis similar to the basis of standard monomials of the coordinate ring of a Grassmannian In mathematics, the Grassmannian is a space that parameterizes all -Dimension, dimensional linear subspaces of the -dimensional vector space . For example, the Grassmannian is the space of lines through the origin in , so it is the same as the .... Hodge algebras were introduced by , who named them after W. V. D. Hodge. References * Commutative algebra {{abstract-algebra-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]