Schreier Domain
   HOME
*





Schreier Domain
In abstract algebra, a Schreier domain, named after Otto Schreier, is an integrally closed domain where every nonzero element is primal; ''i.e.'', whenever ''x'' divides ''yz'', ''x'' can be written as ''x'' = ''x''1 ''x''2 so that ''x''1 divides ''y'' and ''x''2 divides ''z''. An integral domain is said to be pre-Schreier if every nonzero element is primal. A GCD domain is an example of a Schreier domain. The term "Schreier domain" was introduced by P. M. Cohn in 1960s. The term "pre-Schreier domain" is due to Muhammad Zafrullah. In general, an irreducible element is primal if and only if it is a prime element. Consequently, in a Schreier domain, every irreducible is prime. In particular, an atomic Schreier domain is a unique factorization domain In mathematics, a unique factorization domain (UFD) (also sometimes called a factorial ring following the terminology of Bourbaki) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abstract Algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term ''abstract algebra'' was coined in the early 20th century to distinguish this area of study from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning. Algebraic structures, with their associated homomorphisms, form mathematical categories. Category theory is a formalism that allows a unified way for expressing properties and constructions that are similar for various structures. Universal algebra is a related subject that studies types of algebraic structures as single objects. For example, the structure of groups is a single object in universal algebra, which is called the ''variety of groups''. History Before the nineteenth century, algebra meant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Otto Schreier
Otto Schreier (3 March 1901 in Vienna, Austria – 2 June 1929 in Hamburg, Germany) was a Jewish-Austrian mathematician who made major contributions in combinatorial group theory and in the topology of Lie groups. Life His parents were the architect Theodor Schreier (1873-1943) and his wife Anna (b. Turnau) (1878-1942). From 1920 Otto Schreier studied at the University of Vienna and took classes with Wilhelm Wirtinger, Philipp Furtwängler, Hans Hahn, Kurt Reidemeister, Leopold Vietoris, and Josef Lense. In 1923 he obtained his doctorate, under the supervision of Philipp Furtwängler, entitled ''On the expansion of groups (Über die Erweiterung von Gruppen)''. In 1926 he completed his habilitation with Emil Artin at the University of Hamburg ''(Die Untergruppen der freien Gruppe. Abhandlungen des Mathematischen Seminars der Universität Hamburg, Band 5, 1927, Seiten 172–179)'', where he had also given lectures before. In 1928 he became a professor at the University of Rost ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integrally Closed Domain
In commutative algebra, an integrally closed domain ''A'' is an integral domain whose integral closure in its field of fractions is ''A'' itself. Spelled out, this means that if ''x'' is an element of the field of fractions of ''A'' which is a root of a monic polynomial with coefficients in ''A,'' then ''x'' is itself an element of ''A.'' Many well-studied domains are integrally closed: fields, the ring of integers Z, unique factorization domains and regular local rings are all integrally closed. Note that integrally closed domains appear in the following chain of class inclusions: Basic properties Let ''A'' be an integrally closed domain with field of fractions ''K'' and let ''L'' be a field extension of ''K''. Then ''x''∈''L'' is integral over ''A'' if and only if it is algebraic over ''K'' and its minimal polynomial over ''K'' has coefficients in ''A''. In particular, this means that any element of ''L'' integral over ''A'' is root of a monic polynomial in ''A'' 'X'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GCD Domain
In mathematics, a GCD domain is an integral domain ''R'' with the property that any two elements have a greatest common divisor (GCD); i.e., there is a unique minimal principal ideal containing the ideal generated by two given elements. Equivalently, any two elements of ''R'' have a least common multiple (LCM). A GCD domain generalizes a unique factorization domain (UFD) to a non-Noetherian setting in the following sense: an integral domain is a UFD if and only if it is a GCD domain satisfying the ascending chain condition on principal ideals (and in particular if it is Noetherian). GCD domains appear in the following chain of class inclusions: Properties Every irreducible element of a GCD domain is prime. A GCD domain is integrally closed, and every nonzero element is primal. In other words, every GCD domain is a Schreier domain. For every pair of elements ''x'', ''y'' of a GCD domain ''R'', a GCD ''d'' of ''x'' and ''y'' and an LCM ''m'' of ''x'' and ''y'' can be chosen s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Irreducible Element
In algebra, an irreducible element of a domain is a non-zero element that is not invertible (that is, is not a unit), and is not the product of two non-invertible elements. Relationship with prime elements Irreducible elements should not be confused with prime elements. (A non-zero non-unit element a in a commutative ring R is called prime if, whenever a \mid bc for some b and c in R, then a \mid b or a \mid c.) In an integral domain, every prime element is irreducible,Sharpe (1987) p.54 but the converse is not true in general. The converse is true for unique factorization domains (or, more generally, GCD domains). Moreover, while an ideal generated by a prime element is a prime ideal, it is not true in general that an ideal generated by an irreducible element is an irreducible ideal. However, if D is a GCD domain and x is an irreducible element of D, then as noted above x is prime, and so the ideal generated by x is a prime (hence irreducible) ideal of D. Example In the quadr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Prime Element
In mathematics, specifically in abstract algebra, a prime element of a commutative ring is an object satisfying certain properties similar to the prime numbers in the integers and to irreducible polynomials. Care should be taken to distinguish prime elements from irreducible elements, a concept which is the same in UFDs but not the same in general. Definition An element of a commutative ring is said to be prime if it is not the zero element or a unit and whenever divides for some and in , then divides or divides . With this definition, Euclid's lemma is the assertion that prime numbers are prime elements in the ring of integers. Equivalently, an element is prime if, and only if, the principal ideal generated by is a nonzero prime ideal. (Note that in an integral domain, the ideal is a prime ideal, but is an exception in the definition of 'prime element'.) Interest in prime elements comes from the fundamental theorem of arithmetic, which asserts that each nonzero in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Atomic Domain
In mathematics, more specifically ring theory, an atomic domain or factorization domain is an integral domain in which every non-zero non-unit can be written in at least one way as a finite product of irreducible elements. Atomic domains are different from unique factorization domains in that this decomposition of an element into irreducibles need not be unique; stated differently, an irreducible element is not necessarily a prime element. Important examples of atomic domains include the class of all unique factorization domains and all Noetherian domains. More generally, any integral domain satisfying the ascending chain condition on principal ideals (ACCP) is an atomic domain. Although the converse is claimed to hold in Cohn's paper, this is known to be false. The term "atomic" is due to P. M. Cohn, who called an irreducible element of an integral domain an "atom". Motivation In this section, a ring can be viewed as merely an abstract set in which one can perform the operati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unique Factorization Domain
In mathematics, a unique factorization domain (UFD) (also sometimes called a factorial ring following the terminology of Bourbaki) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an integral domain (a nontrivial commutative ring in which the product of any two non-zero elements is non-zero) in which every non-zero non-unit element can be written as a product of prime elements (or irreducible elements), uniquely up to order and units. Important examples of UFDs are the integers and polynomial rings in one or more variables with coefficients coming from the integers or from a field. Unique factorization domains appear in the following chain of class inclusions: Definition Formally, a unique factorization domain is defined to be an integral domain ''R'' in which every non-zero element ''x'' of ''R'' can be written as a product (an empty product if ''x'' is a unit) of irreducible elements ''p''i of ''R'' and a uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]