Schmidt Corrector Plate
   HOME
*



picture info

Schmidt Corrector Plate
A Schmidt camera, also referred to as the Schmidt telescope, is a catadioptric astrophotographic telescope designed to provide wide fields of view with limited aberrations. The design was invented by Bernhard Schmidt in 1930. Some notable examples are the Samuel Oschin telescope (formerly Palomar Schmidt), the UK Schmidt Telescope and the ESO Schmidt; these provided the major source of all-sky photographic imaging from 1950 until 2000, when electronic detectors took over. A recent example is the Kepler space telescope exoplanet finder. Other related designs are the Wright camera and Lurie–Houghton telescope. Invention and design The Schmidt camera was invented by German–Estonian optician Bernhard Schmidt in 1930. Its optical components are an easy-to-make spherical primary mirror, and an aspherical correcting lens, known as a Schmidt corrector plate, located at the center of curvature of the primary mirror. The film or other detector is placed inside the camera, at the p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Schmidt Camera
A Schmidt camera, also referred to as the Schmidt telescope, is a catadioptric astrophotographic telescope designed to provide wide fields of view with limited aberrations. The design was invented by Bernhard Schmidt in 1930. Some notable examples are the Samuel Oschin telescope (formerly Palomar Schmidt), the UK Schmidt Telescope and the ESO Schmidt; these provided the major source of all-sky photographic imaging from 1950 until 2000, when electronic detectors took over. A recent example is the Kepler space telescope exoplanet finder. Other related designs are the Wright camera and Lurie–Houghton telescope. Invention and design The Schmidt camera was invented by German–Estonian optician Bernhard Schmidt in 1930. Its optical components are an easy-to-make spherical primary mirror, and an aspherical correcting lens, known as a Schmidt corrector plate, located at the center of curvature of the primary mirror. The film or other detector is placed inside the camera, at the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Focal Ratio
In optics, the f-number of an optical system such as a camera lens is the ratio of the system's focal length to the diameter of the entrance pupil ("clear aperture").Smith, Warren ''Modern Optical Engineering'', 4th Ed., 2007 McGraw-Hill Professional, p. 183. It is also known as the focal ratio, f-ratio, or f-stop, and is very important in photography. It is a dimensionless number that is a quantitative measure of lens speed; increasing the f-number is referred to as ''stopping down''. The f-number is commonly indicated using a lower-case hooked f with the format ''N'', where ''N'' is the f-number. The f-number is the reciprocal of the relative aperture (the aperture diameter divided by focal length). Notation The f-number is given by: N = \frac \ where f is the focal length, and D is the diameter of the entrance pupil (''effective aperture''). It is customary to write f-numbers preceded by "", which forms a mathematical expression of the entrance pupil diameter i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Amateur Telescope Making
''Amateur Telescope Making'' (''ATM'') is a series of three books edited by Albert G. Ingalls between 1926 and 1953 while he was an associate editor at ''Scientific American''. The books cover various aspects of telescope construction and observational technique, sometimes at quite an advanced level, but always in a way that is accessible to the intelligent amateur. The caliber of the contributions is uniformly high and the books have remained in constant use by both amateurs and professionals. The first volume was essentially a reprinting of articles written by Ingalls and Russell W. Porter for Ingalls's monthly column "The Backyard Astronomer" (later " The Amateur Scientist") in the 1920s. It also featured numerous drawings by Porter. The two later volumes contained chapters written by James Gilbert Baker, George Ellery Hale, George Willis Ritchey and others on topics ranging from lens grinding to monochromators to photoelectric photometry. Much of the information, including ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Schmidt–Cassegrain Telescope
The Schmidt–Cassegrain is a catadioptric telescope that combines a Cassegrain reflector's optical path with a Schmidt corrector plate to make a compact astronomical instrument that uses simple spherical surfaces. Invention and design The American astronomer and lens designer James Gilbert Baker first proposed a Cassegrain design for Bernhard Schmidt's Schmidt camera in 1940. The optical shop at Mount Wilson Observatory manufactured the first one during World War II as part of their research into optical designs for the military. As in the Schmidt camera, this design uses a spherical primary mirror and a Schmidt corrector plate to correct for spherical aberration. In this Cassegrain configuration the convex secondary mirror acts as a field flattener and relays the image through the perforated primary mirror to a final focal plane located behind the primary. Some designs include additional optical elements (such as field flatteners) near the focal plane. The first large tele ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schmidt Telescope
Schmidt may refer to: * Schmidt (surname), including list of people with the surname * Schmidt (singer) (born 1990), German pop and jazz singer * Schmidt (lunar crater), a small lunar impact crater * Schmidt (Martian crater), a crater on Mars * Schmidt (volcano), in Kamchatka * Schmidt Block, listed on the National Register of Historic Places in Scott County, Iowa, USA * Schmidt Brewery, a St. Paul brewery * Schmidt camera, an astronomical telescope designed for photography * Schmidt–Cassegrain telescope, a version of the Schmidt camera * Schmidt Site, an archeological site in Michigan, USA, listed on the National Register of Historic Places in 1973 * Schmidt Spiele, a German games manufacturer * Schmidt Baking Company, makers of Schmidt's Blue Ribbon Bread * von Schmidt auf Altenstadt, a German baronial family in Kirchgattendorf, part of the municipality of Gattendorf * Schmidt Island, an island in the Novaya Zemlya archipelago in the Arctic Ocean * Schmidt Peninsula (Sakhal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spherical Aberration
In optics, spherical aberration (SA) is a type of optical aberration, aberration found in optical systems that have elements with spherical surfaces. Lens (optics), Lenses and curved mirrors are prime examples, because this shape is easier to manufacture. Light rays that strike a spherical surface off-centre are refraction, refracted or reflection (physics), reflected more or less than those that strike close to the centre. This deviation reduces the quality of images produced by optical systems. Overview A spherical lens has an Optical aberration#Aberration of elements, i.e. smallest objects at right angles to the axis, aplanatic point (i.e., no spherical aberration) only at a radius that equals the radius of the sphere divided by the index of refraction of the lens material. A typical value of refractive index for crown glass is 1.5 (see List of refractive indices, list), which indicates that only about 43% of the area (67% of diameter) of a spherical lens is useful. It is o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aspheric Lens
An aspheric lens or asphere (often labeled ''ASPH'' on eye pieces) is a lens whose surface profiles are not portions of a sphere or cylinder. In photography, a lens assembly that includes an aspheric element is often called an aspherical lens. The asphere's more complex surface profile can reduce or eliminate spherical aberration and also reduce other optical aberrations such as astigmatism, compared to a simple lens. A single aspheric lens can often replace a much more complex multi-lens system. The resulting device is smaller and lighter, and sometimes cheaper than the multi-lens design. Aspheric elements are used in the design of multi-element wide-angle and fast normal lenses to reduce aberrations. They are also used in combination with reflective elements (catadioptric systems) such as the aspherical Schmidt corrector plate used in the Schmidt cameras and the Schmidt–Cassegrain telescopes. Small molded aspheres are often used for collimating diode lasers. Aspheric lenses ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schema Lame De Schmidt
The word schema comes from the Greek word ('), which means ''shape'', or more generally, ''plan''. The plural is ('). In English, both ''schemas'' and ''schemata'' are used as plural forms. Schema may refer to: Science and technology * SCHEMA (bioinformatics), an algorithm used in protein engineering * Schema (genetic algorithms), a set of programs or bit strings that have some genotypic similarity * Schema.org, a web markup vocabulary * Schema (logic) ** Axiom schema, in formal logic * Image schema, a recurring pattern of spatial sensory experience * Database schema * XML schema Other * Body schema, a neural representation of one's own bodily posture * Galant Schemata, stock phrases in Galant music * Schema (Kant), in philosophy * Schema (psychology), a mental set or representation * Schema Records, a jazz record label in Milan, Italy *, a solemn vow of asceticism of a monk in Orthodox monasticism ** Great Schema, the highest degree of Orthodox monasticism * '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diffraction
Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a secondary source of the propagating wave. Italian scientist Francesco Maria Grimaldi coined the word ''diffraction'' and was the first to record accurate observations of the phenomenon in 1660. In classical physics, the diffraction phenomenon is described by the Huygens–Fresnel principle that treats each point in a propagating wavefront as a collection of individual spherical wavelets. The characteristic bending pattern is most pronounced when a wave from a coherent source (such as a laser) encounters a slit/aperture that is comparable in size to its wavelength, as shown in the inserted image. This is due to the addition, or interference, of different points on the wavefront (or, equivalently, each wavelet) that travel by paths of d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vacuum
A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often discuss ideal test results that would occur in a ''perfect'' vacuum, which they sometimes simply call "vacuum" or free space, and use the term partial vacuum to refer to an actual imperfect vacuum as one might have in a laboratory or in space. In engineering and applied physics on the other hand, vacuum refers to any space in which the pressure is considerably lower than atmospheric pressure. The Latin term ''in vacuo'' is used to describe an object that is surrounded by a vacuum. The ''quality'' of a partial vacuum refers to how closely it approaches a perfect vacuum. Other things equal, lower gas pressure means higher-quality vacuum. For example, a typical vacuum cleaner produces enough suction to reduce air pressure by around 20%. But hig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Focal Plane
In Gaussian optics, the cardinal points consist of three pairs of points located on the optical axis of a rotationally symmetric, focal, optical system. These are the '' focal points'', the principal points, and the nodal points. For ''ideal'' systems, the basic imaging properties such as image size, location, and orientation are completely determined by the locations of the cardinal points; in fact only four points are necessary: the focal points and either the principal or nodal points. The only ideal system that has been achieved in practice is the plane mirror, however the cardinal points are widely used to ''approximate'' the behavior of real optical systems. Cardinal points provide a way to analytically simplify a system with many components, allowing the imaging characteristics of the system to be approximately determined with simple calculations. Explanation The cardinal points lie on the optical axis of the optical system. Each point is defined by the effect the opti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]