Schlosser Base
   HOME
*





Schlosser Base
Schlosser's base (or Lochmann-Schlosser base) describes various superbase, superbasic mixtures of an alkyllithium compound and a potassium alkoxide. The reagent is named after Manfred Schlosser, although he uses the term ''LICKOR superbase'' (LIC denoting the alkyllithium, and KOR denoting the potassium alkoxide). The superbasic nature of the reagent is a consequence of the ''in situ'' formation of the corresponding organopotassium compound, as well as changes to the aggregation state of the alkyllithium species. Preparation and reactivity Commonly, the mixture called Schlosser's base is produced by combining N-Butyllithium, ''n''-butyllithium and Potassium tert-butoxide, potassium ''tert''-butoxide in a one-to-one ratio. The high reactivity of Schlosser's base is exploited in synthetic organic chemistry for the preparation of organometallic reagents. For example, potassium benzyl can be prepared from toluene using this reagent. Benzene and ''cis/trans''-2-butene are also readi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Superbase
A superbase is a compound that has a particularly high affinity for protons. Superbases are of theoretical interest and potentially valuable in organic synthesis. Superbases have been described and used since the 1850s.''Superbases for Organic Synthesis'' Ed. Ishikawa, T., John Wiley and Sons, Ltd.: West Sussex, UK. 2009. Definitions Generically IUPAC defines a superbase as a "compound having a very high basicity, such as lithium diisopropylamide." Superbases are often defined in two broad categories, organic and organometallic. Organic superbases are charge-neutral compounds with basicities greater than that of proton sponge (pKBH+ = 18.6 in MeCN)." In a related definition: any species with a higher absolute proton affinity (APA = 245.3 kcal/mol) and intrinsic gas phase basicity (GB = 239 kcal/mol) than proton sponge. Common superbases of this variety feature amidine, guanidine, and phosphazene functional groups. Strong superbases can be designed by utilizing multiple intram ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE