Schlieren Photography
   HOME
*



picture info

Schlieren Photography
Schlieren photography is a process for photographing fluid flow. Invented by the German physicist August Toepler in 1864 to study supersonic motion, it is widely used in aeronautical engineering to photograph the flow of air around objects. Classical optical system The classical implementation of an optical schlieren system uses light from a single collimated source shining on, or from behind, a target object. Variations in refractive index caused by density gradients in the fluid distort the collimated light beam. This distortion creates a spatial variation in the intensity of the light, which can be visualised directly with a shadowgraph system. Classical schlieren imaging systems appear in two configurations, using either one or two mirrors. In each case, a transparent object is illuminated with collimated or nearly-collimated light. Rays that are not deflected by the object proceed to their focal point, where they are blocked by a knife edge. Rays that are deflected by t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scintillation (astronomy)
Twinkling, also called scintillation, is a generic term for variations in apparent brightness, colour, or position of a distant luminous object viewed through a medium.Wang, Ting-I; Williams, Donn"Scintillation technology bests NIST" , ''InTech'', May 1, 2005. If the object lies outside the Earth's atmosphere, as in the case of stars and planets, the phenomenon is termed ''astronomical scintillation''; for objects within the atmosphere, the phenomenon is termed ''terrestrial scintillation''. As one of the three principal factors governing astronomical seeing (the others being light pollution and cloud cover), atmospheric scintillation is defined as variations in illuminance only. In simple terms, twinkling of stars is caused by the passing of light through different layers of a turbulent atmosphere. Most scintillation effects are caused by anomalous atmospheric refraction caused by small-scale fluctuations in air density usually related to temperature gradients. Scintillation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Adaptive Optics
Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of incoming wavefront distortions by deforming a mirror in order to compensate for the distortion. It is used in astronomical telescopes and laser communication systems to remove the effects of atmospheric distortion, in microscopy, optical fabrication and in retinal imaging systems to reduce optical aberrations. Adaptive optics works by measuring the distortions in a wavefront and compensating for them with a device that corrects those errors such as a deformable mirror or a liquid crystal array. Adaptive optics should not be confused with active optics, which works on a longer timescale to correct the primary mirror geometry. Other methods can achieve resolving power exceeding the limit imposed by atmospheric distortion, such as speckle imaging, aperture synthesis, and lucky imaging, or by moving outside the atmosphere with space telescopes, such as the Hubble Sp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

High-speed Photography
High-speed photography is the science of taking pictures of very fast phenomena. In 1948, the Society of Motion Picture and Television Engineers (SMPTE) defined high-speed photography as any set of photographs captured by a camera capable of 69 frames per second or greater, and of at least three consecutive frames . High-speed photography can be considered to be the opposite of time-lapse photography. In common usage, high-speed photography may refer to either or both of the following meanings. The first is that the photograph itself may be taken in a way as to appear to freeze the motion, especially to reduce motion blur. The second is that a series of photographs may be taken at a high sampling frequency or frame rate. The first requires a sensor with good sensitivity and either a very good shuttering system or a very fast strobe light. The second requires some means of capturing successive frames, either with a mechanical device or by moving data off electronic sensors very qu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Synthetic Schlieren
Synthetic schlieren is a process that is used to visualize the flow of a fluid of variable refractive index. Named after the schlieren method of visualization, it consists of a digital camera or video camera pointing at the flow in question, with an illuminated target pattern behind. The method was first proposed in 1999.{{citation , doi=10.1017/S0022112099005017 , first1=B. R. , last1=Sutherland , first2=S. B. , last2=Dalziel , first3=G. O. , last3=Hughes , first4=P. F. , last4=Linden , title=Visualization and measurement of internal waves by "synthetic schlieren". Part 1: Vertically oscillating cylinder , journal=Journal of Fluid Mechanics , volume=390 , issue=1 , pages=93–126 , year=1999 , bibcode=1999JFM...390...93S Variations in refractive index cause the light from the target to refract as it passes through the fluid, which causes a distortion of the pattern in the image seen by the camera. Pattern matching algorithms can measure this distortion and calcu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Optical Flow
Optical flow or optic flow is the pattern of apparent motion of objects, surfaces, and edges in a visual scene caused by the relative motion between an observer and a scene. Optical flow can also be defined as the distribution of apparent velocities of movement of brightness pattern in an image. The concept of optical flow was introduced by the American psychologist James J. Gibson in the 1940s to describe the visual stimulus provided to animals moving through the world. Gibson stressed the importance of optic flow for affordance perception, the ability to discern possibilities for action within the environment. Followers of Gibson and his ecological approach to psychology have further demonstrated the role of the optical flow stimulus for the perception of movement by the observer in the world; perception of the shape, distance and movement of objects in the world; and the control of locomotion. The term optical flow is also used by roboticists, encompassing related techniq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Digital Image Correlation
Digital image correlation and tracking is an optical method that employs tracking and image registration techniques for accurate 2D and 3D measurements of changes in images. This method is often used to measure full-field displacement and strains, and it is widely applied in many areas of science and engineering. Compared to strain gages and extensometers, the amount of information gathered about the fine details of deformation during mechanical tests is increased due to the ability to provide both local and average data using digital image correlation. Overview Digital image correlation (DIC) techniques have been increasing in popularity, especially imicro- and nano-scale mechanical testingapplications due to its relative ease of implementation and use. Advances in computer technology and digital cameras have been the enabling technologies for this method and while white-light optics has been the predominant approach, DIC can be and has been extended to almost any imaging techno ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperfocal Distance
In optics and photography, hyperfocal distance is a distance beyond which all objects can be brought into an "acceptable" focus. As the hyperfocal distance is the focus distance giving the maximum depth of field, it is the most desirable distance to set the focus of a fixed-focus camera. The hyperfocal distance is entirely dependent upon what level of sharpness is considered to be acceptable. The hyperfocal distance has a property called "consecutive depths of field", where a lens focused at an object whose distance is at the hyperfocal distance ''H'' will hold a depth of field from ''H''/2 to infinity, if the lens is focused to ''H''/2, the depth of field will extend from ''H''/3 to ''H''; if the lens is then focused to ''H''/3, the depth of field will extend from ''H''/4 to ''H''/2, etc. Thomas Sutton and George Dawson first wrote about hyperfocal distance (or "focal range") in 1867. Louis Derr in 1906 may have been the first to derive a formula for hyperfocal distance. Rudo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shockwave Pattern Around A T-38C Observed With Background-Oriented Schlieren Photography (1)
In physics, a shock wave (also spelled shockwave), or shock, is a type of propagating disturbance that moves faster than the local speed of sound in the medium. Like an ordinary wave, a shock wave carries energy and can propagate through a medium but is characterized by an abrupt, nearly discontinuous, change in pressure, temperature, and density of the medium. For the purpose of comparison, in supersonic flows, additional increased expansion may be achieved through an expansion fan, also known as a Prandtl–Meyer expansion fan. The accompanying expansion wave may approach and eventually collide and recombine with the shock wave, creating a process of destructive interference. The sonic boom associated with the passage of a supersonic aircraft is a type of sound wave produced by constructive interference. Unlike solitons (another kind of nonlinear wave), the energy and speed of a shock wave alone dissipates relatively quickly with distance. When a shock wave passes through m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Schlieren Optics
Schlieren photography is a process for photographing fluid flow. Invented by the German physicist August Toepler in 1864 to study supersonic motion, it is widely used in aeronautical engineering to photograph the flow of air around objects. Classical optical system The classical implementation of an optical schlieren system uses light from a single collimated source shining on, or from behind, a target object. Variations in refractive index caused by density gradients in the fluid distort the collimated light beam. This distortion creates a spatial variation in the intensity of the light, which can be visualised directly with a shadowgraph system. Classical schlieren imaging systems appear in two configurations, using either one or two mirrors. In each case, a transparent object is illuminated with collimated or nearly-collimated light. Rays that are not deflected by the object proceed to their focal point, where they are blocked by a knife edge. Rays that are deflected by t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]