Schiffler Point
   HOME
*





Schiffler Point
In geometry, the Schiffler point of a triangle is a triangle center, a point defined from the triangle that is equivariant under Euclidean transformations of the triangle. This point was first defined and investigated by Schiffler et al. (1985). Definition A triangle ''ABC'' with the incenter ''I'' has its Schiffler point at the point of concurrence of the Euler lines of the four triangles ''BCI'', ''CAI'', ''ABI'', and ''ABC''. Schiffler's theorem states that these four lines all meet at a single point. Coordinates Trilinear coordinates In geometry, the trilinear coordinates of a point relative to a given triangle describe the relative directed distances from the three sidelines of the triangle. Trilinear coordinates are an example of homogeneous coordinates. The ratio is t ... for the Schiffler point are :\frac : \frac : \frac or, equivalently, :\frac : \frac : \frac where denote the side lengths of triangle . References * * * * * * External links * {{MathWorld, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schiffler Point
In geometry, the Schiffler point of a triangle is a triangle center, a point defined from the triangle that is equivariant under Euclidean transformations of the triangle. This point was first defined and investigated by Schiffler et al. (1985). Definition A triangle ''ABC'' with the incenter ''I'' has its Schiffler point at the point of concurrence of the Euler lines of the four triangles ''BCI'', ''CAI'', ''ABI'', and ''ABC''. Schiffler's theorem states that these four lines all meet at a single point. Coordinates Trilinear coordinates In geometry, the trilinear coordinates of a point relative to a given triangle describe the relative directed distances from the three sidelines of the triangle. Trilinear coordinates are an example of homogeneous coordinates. The ratio is t ... for the Schiffler point are :\frac : \frac : \frac or, equivalently, :\frac : \frac : \frac where denote the side lengths of triangle . References * * * * * * External links * {{MathWorld, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geometries ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangle
A triangle is a polygon with three Edge (geometry), edges and three Vertex (geometry), vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non-Collinearity, collinear, determine a unique triangle and simultaneously, a unique Plane (mathematics), plane (i.e. a two-dimensional Euclidean space). In other words, there is only one plane that contains that triangle, and every triangle is contained in some plane. If the entire geometry is only the Euclidean plane, there is only one plane and all triangles are contained in it; however, in higher-dimensional Euclidean spaces, this is no longer true. This article is about triangles in Euclidean geometry, and in particular, the Euclidean plane, except where otherwise noted. Types of triangle The terminology for categorizing triangles is more than two thousand years old, having been defined on the very first page of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangle Center
In geometry, a triangle center (or triangle centre) is a point in the plane that is in some sense a center of a triangle akin to the centers of squares and circles, that is, a point that is in the middle of the figure by some measure. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, and can be obtained by simple constructions. Each of these classical centers has the property that it is invariant (more precisely equivariant) under similarity transformations. In other words, for any triangle and any similarity transformation (such as a rotation, reflection, dilation, or translation), the center of the transformed triangle is the same point as the transformed center of the original triangle. This invariance is the defining property of a triangle center. It rules out other well-known points such as the Brocard points which are not invariant under reflection and so fail to qualify as triangle centers. For an equilateral triangle, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equivariant
In mathematics, equivariance is a form of symmetry for functions from one space with symmetry to another (such as symmetric spaces). A function is said to be an equivariant map when its domain and codomain are acted on by the same symmetry group, and when the function commutes with the action of the group. That is, applying a symmetry transformation and then computing the function produces the same result as computing the function and then applying the transformation. Equivariant maps generalize the concept of invariants, functions whose value is unchanged by a symmetry transformation of their argument. The value of an equivariant map is often (imprecisely) called an invariant. In statistical inference, equivariance under statistical transformations of data is an important property of various estimation methods; see invariant estimator for details. In pure mathematics, equivariance is a central object of study in equivariant topology and its subtopics equivariant cohomology and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euclidean Transformation
In mathematics, a rigid transformation (also called Euclidean transformation or Euclidean isometry) is a geometric transformation of a Euclidean space that preserves the Euclidean distance between every pair of points. The rigid transformations include rotations, translations, reflections, or any sequence of these. Reflections are sometimes excluded from the definition of a rigid transformation by requiring that the transformation also preserve the handedness of objects in the Euclidean space. (A reflection would not preserve handedness; for instance, it would transform a left hand into a right hand.) To avoid ambiguity, a transformation that preserves handedness is known as a proper rigid transformation, or rototranslation. Any proper rigid transformation can be decomposed into a rotation followed by a translation, while any improper rigid transformation can be decomposed into an improper rotation followed by a translation, or into a sequence of reflections. Any object wil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kurt Schiffler
Kurt Schiffler (6 April 1896 - 25 February 1986) was a German engineer, entrepreneur, inventor and amateur geometer. Schiffler's father was an elementary school teacher and his grandfather was a toy manufacturer. Schiffler was born in Gotha, Thuringia, where he grew up as well. He had just completed the local gymnasium (high-school) in 1914, when he was drafted as a soldier in World War I. After the war Schiffler studied first at the Freiberg University of Mining and Technology and later at the University of Stuttgart, which awarded him an engineering degree. Then he worked as an engineer for a machine factory in Esslingen.Lore Thier-Schröter und Hellmut Thier: ''Kurt Schiffler zum 100. Geburtstag. Gründer der Dusyma-Werkstätten.'' L. Schiffler-Betz, Schorndorf-Miedelsbach 1996, pp. 8-9,15-17, 23-24, 29-33(German) In 1925 he founded his own company called Dusyma, which produced educational toys and musical instrument made of wood. The instruments that Dusyma produced comprised ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Incenter
In geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bisectors of the triangle cross, as the point equidistant from the triangle's sides, as the junction point of the medial axis and innermost point of the grassfire transform of the triangle, and as the center point of the inscribed circle of the triangle. Together with the centroid, circumcenter, and orthocenter, it is one of the four triangle centers known to the ancient Greeks, and the only one of the four that does not in general lie on the Euler line. It is the first listed center, X(1), in Clark Kimberling's Encyclopedia of Triangle Centers, and the identity element of the multiplicative group of triangle centers..
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euler Line
In geometry, the Euler line, named after Leonhard Euler (), is a line determined from any triangle that is not equilateral. It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle. The concept of a triangle's Euler line extends to the Euler line of other shapes, such as the quadrilateral and the tetrahedron. Triangle centers on the Euler line Individual centers Euler showed in 1765 that in any triangle, the orthocenter, circumcenter and centroid are collinear. This property is also true for another triangle center, the nine-point center, although it had not been defined in Euler's time. In equilateral triangles, these four points coincide, but in any other triangle they are all distinct from each other, and the Euler line is determined by any two of them. Other notable points that lie on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Trilinear Coordinates
In geometry, the trilinear coordinates of a point relative to a given triangle describe the relative directed distances from the three sidelines of the triangle. Trilinear coordinates are an example of homogeneous coordinates. The ratio is the ratio of the perpendicular distances from the point to the sides (extended if necessary) opposite vertices and respectively; the ratio is the ratio of the perpendicular distances from the point to the sidelines opposite vertices and respectively; and likewise for and vertices and . In the diagram at right, the trilinear coordinates of the indicated interior point are the actual distances (, , ), or equivalently in ratio form, for any positive constant . If a point is on a sideline of the reference triangle, its corresponding trilinear coordinate is 0. If an exterior point is on the opposite side of a sideline from the interior of the triangle, its trilinear coordinate associated with that sideline is negative. It is impossible ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Forum Geometricorum
''Forum Geometricorum: A Journal on Classical Euclidean Geometry'' is a peer-reviewed open-access academic journal that specializes in mathematical research papers on Euclidean geometry. It was founded in 2001, is published by Florida Atlantic University Florida Atlantic University (Florida Atlantic or FAU) is a public research university with its main campus in Boca Raton, Florida, and satellite campuses in Dania Beach, Davie, Fort Lauderdale, Jupiter, and Fort Pierce. FAU belongs to the 12-ca ..., and is indexed among others by Mathematical Reviews and . Its founding editor-in-chief was Paul Yiu, a professor of mathematics at Florida Atlantic, now retired. All papers are available online immediately upon acceptance through the journal's web site. , Forum Geometricorum is no longer accepting submissions. Prior issues are still available. See also * International Journal of Geometry References External links * {{official website, http://forumgeom.fau.edu/ Mathematic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Crux Mathematicorum
''Crux Mathematicorum'' is a scientific journal of mathematics published by the Canadian Mathematical Society. It contains mathematical problems for secondary school and undergraduate students. , its editor-in-chief is Kseniya Garaschuk. The journal was established in 1975, under the name ''Eureka'', by the Carleton-Ottawa Mathematics Association, with Léo Sauvé as its first editor-in-chief. It took the name ''Crux Mathematicorum'' with its fourth volume, in 1978, to avoid confusion with another journal ''Eureka'' published by the Cambridge University Mathematical Society. The Canadian Mathematical Society took over the journal in 1985, and soon afterwards G.W. (Bill) Sands became its new editor. Bruce L. R. Shawyer took over as editor in 1996. In 1997 it merged with another journal founded in 1988, ''Mathematical Mayhem'', to become ''Crux Mathematicorum with Mathematical Mayhem''. Jim Totten became editor in 2003, and Václav (Vazz) Linek replaced him in 2008. Ross Honsberger ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]