Scattering Amplitude
   HOME
*





Scattering Amplitude
In quantum physics, the scattering amplitude is the probability amplitude of the outgoing spherical wave relative to the incoming plane wave in a stationary-state scattering process.''Quantum Mechanics: Concepts and Applications''
By Nouredine Zettili, 2nd edition, page 623. Paperback 688 pages January 2009 The plane wave is described by the : \psi(\mathbf) = e^ + f(\theta)\frac \;, where \mathbf\equiv(x,y,z) is the position vector; r\equiv, \mathbf, ; e^ is the incoming plane wave with the

picture info

Quantum Physics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale. Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values ( quantization); objects have characteristics of both particles and waves (wave–particle duality); and there are limits to ho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Classical Electron Radius
The classical electron radius is a combination of fundamental physical quantities that define a length scale for problems involving an electron interacting with electromagnetic radiation. It links the classical electrostatic self-interaction energy of a homogeneous charge distribution to the electron's relativistic mass–energy. According to modern understanding, the electron is a point particle with a point charge and no spatial extent. Nevertheless, it is useful to define a length that characterizes electron interactions in atomic-scale problems. The classical electron radius is given as :r_\text = \frac\frac = 2.817 940 3227(19) \times 10^ \text = 2.817 940 3227(19) \text , where e is the elementary charge, m_ is the electron mass, c is the speed of light, and \varepsilon_0 is the permittivity of free space. This numerical value is several times larger than the radius of the proton. In cgs units, the permittivity factor and \frac do not enter, but the classical electron ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electron
The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no known components or substructure. The electron's mass is approximately 1/1836 that of the proton. Quantum mechanical properties of the electron include an intrinsic angular momentum ( spin) of a half-integer value, expressed in units of the reduced Planck constant, . Being fermions, no two electrons can occupy the same quantum state, in accordance with the Pauli exclusion principle. Like all elementary particles, electrons exhibit properties of both particles and waves: They can collide with other particles and can be diffracted like light. The wave properties of electrons are easier to observe with experiments than those of other particles like neutrons and protons because electrons have a lower mass and hence a longer de Broglie wavele ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

X-rays
An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 Picometre, picometers to 10 Nanometre, nanometers, corresponding to frequency, frequencies in the range 30 Hertz, petahertz to 30 Hertz, exahertz ( to ) and energies in the range 145 electronvolt, eV to 124 keV. X-ray wavelengths are shorter than those of ultraviolet, UV rays and typically longer than those of gamma rays. In many languages, X-radiation is referred to as Röntgen radiation, after the German scientist Wilhelm Röntgen, Wilhelm Conrad Röntgen, who discovered it on November 8, 1895. He named it ''X-radiation'' to signify an unknown type of radiation.Novelline, Robert (1997). ''Squire's Fundamentals of Radiology''. Harvard University Press. 5th edition. . Spellings of ''X-ray(s)'' in English include the variants ''x-ray(s)'', ''xray(s)'', and ''X ray(s)''. The most familiar use of X-ra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neutron
The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave similarly within the nucleus, and each has a mass of approximately one atomic mass unit, they are both referred to as nucleons. Their properties and interactions are described by nuclear physics. Protons and neutrons are not elementary particles; each is composed of three quarks. The chemical properties of an atom are mostly determined by the configuration of electrons that orbit the atom's heavy nucleus. The electron configuration is determined by the charge of the nucleus, which is determined by the number of protons, or atomic number. The number of neutrons is the neutron number. Neutrons do not affect the electron configuration, but the sum of atomic and neutron numbers is the mass of the nucleus. Atoms of a chemical element t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Plane Wave Expansion
In physics, the plane-wave expansion expresses a plane wave as a linear combination of spherical waves: e^ = \sum_^\infty (2 \ell + 1) i^\ell j_\ell(k r) P_\ell(\hat \cdot \hat), where * is the imaginary unit, * is a wave vector of length , * is a position vector of length , * are spherical Bessel functions, * are Legendre polynomials, and * the hat denotes the unit vector. In the special case where is aligned with the ''z'' axis, e^ = \sum_^\infty (2 \ell + 1) i^\ell j_\ell(k r) P_\ell(\cos \theta), where is the spherical polar angle of . Expansion in spherical harmonics With the spherical-harmonic addition theorem the equation can be rewritten as e^ = 4 \pi \sum_^\infty \sum_^\ell i^\ell j_\ell(k r) Y_\ell^m(\hat) Y_\ell^(\hat), where * are the spherical harmonics and * the superscript denotes complex conjugation. Note that the complex conjugation can be interchanged between the two spherical harmonics due to symmetry. Applications The plane wave expansio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Veneziano Amplitude
In theoretical physics, the Veneziano amplitude refers to the discovery made in 1968 by Italian theoretical physicist Gabriele Veneziano that the Euler beta function, when interpreted as a scattering amplitude, has many of the features needed to explain the physical properties of strongly interacting mesons, such as symmetry and duality. Conformal symmetry was soon discovered. This discovery can be considered the birth of string theory, as the discovery and invention of string theory came about as a search for a physical model which would give rise to such a scattering amplitude. In particular, the amplitude appears as the four tachyon scattering amplitude in orientated open bosonic string theory. Using Mandelstam variables and the beta function B(x,y), the amplitude is given by : S(k_1,k_2,k_3,k_4) = \frac(2\pi)^\delta^(\Sigma_i k_i)\big (\alpha(s),\alpha(t))+B(\alpha(s),\alpha(u))+B(\alpha(t),\alpha(u))\big where \alpha' is the string constant, k_i are the tachyon four-vector ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Scattering Length
The scattering length in quantum mechanics describes low-energy scattering. For potentials that decay faster than 1/r^3 as r\to \infty, it is defined as the following low-energy limit: : \lim_ k\cot\delta(k) =- \frac\;, where a is the scattering length, k is the wave number, and \delta(k) is the phase shift of the outgoing spherical wave. The elastic cross section, \sigma_e, at low energies is determined solely by the scattering length: : \lim_ \sigma_e = 4\pi a^2\;. General concept When a slow particle scatters off a short ranged scatterer (e.g. an impurity in a solid or a heavy particle) it cannot resolve the structure of the object since its de Broglie wavelength is very long. The idea is that then it should not be important what precise potential V(r) one scatters off, but only how the potential looks at long length scales. The formal way to solve this problem is to do a partial wave expansion (somewhat analogous to the multipole expansion in classical electrodynamic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


S Matrix
In physics, the ''S''-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT). More formally, in the context of QFT, the ''S''-matrix is defined as the unitary matrix connecting sets of asymptotically free particle states (the ''in-states'' and the ''out-states'') in the Hilbert space of physical states. A multi-particle state is said to be ''free'' (non-interacting) if it transforms under Lorentz transformations as a tensor product, or ''direct product'' in physics parlance, of ''one-particle states'' as prescribed by equation below. ''Asymptotically free'' then means that the state has this appearance in either the distant past or the distant future. While the ''S''-matrix may be defined for any background (spacetime) that is asymptotically solvable and has no event horizons, it has a simple form in the case of the Minkowski ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Neutron Scattering
Neutron scattering, the irregular dispersal of free neutrons by matter, can refer to either the naturally occurring physical process itself or to the man-made experimental techniques that use the natural process for investigating materials. The natural/physical phenomenon is of elemental importance in nuclear engineering and the nuclear sciences. Regarding the experimental technique, understanding and manipulating neutron scattering is fundamental to the applications used in crystallography, physics, physical chemistry, biophysics, and materials research. Neutron scattering is practiced at research reactors and spallation neutron sources that provide neutron radiation of varying intensities. Neutron diffraction (elastic scattering) techniques are used for analyzing structures; where inelastic neutron scattering is used in studying atomic vibrations and other excitations. Scattering of fast neutrons "Fast neutrons" (see neutron temperature) have a kinetic energy above ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thomson Scattering Length
The classical electron radius is a combination of fundamental physical quantities that define a length scale for problems involving an electron interacting with electromagnetic radiation. It links the classical electrostatic self-interaction energy of a homogeneous charge distribution to the electron's relativistic mass–energy. According to modern understanding, the electron is a point particle with a point charge and no spatial extent. Nevertheless, it is useful to define a length that characterizes electron interactions in atomic-scale problems. The classical electron radius is given as :r_\text = \frac\frac = 2.817 940 3227(19) \times 10^ \text = 2.817 940 3227(19) \text , where e is the elementary charge, m_ is the electron mass, c is the speed of light, and \varepsilon_0 is the permittivity of free space. This numerical value is several times larger than the radius of the proton. In cgs units, the permittivity factor and \frac do not enter, but the classical electr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Amplitude
In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The modulus squared of this quantity represents a probability density. Probability amplitudes provide a relationship between the quantum state vector of a system and the results of observations of that system, a link was first proposed by Max Born, in 1926. Interpretation of values of a wave function as the probability amplitude is a pillar of the Copenhagen interpretation of quantum mechanics. In fact, the properties of the space of wave functions were being used to make physical predictions (such as emissions from atoms being at certain discrete energies) before any physical interpretation of a particular function was offered. Born was awarded half of the 1954 Nobel Prize in Physics for this understanding, and the probability thus calculated is sometimes called the "Born probability". These probabilistic concepts, namely the probability density and quantum measurement ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]