S Vulpeculae
   HOME
*





S Vulpeculae
S Vulpeculae is a variable star located in the constellation Vulpecula. A supergiant star, it is around 382 times the diameter of the Sun. S Vulpeculae was first suspected of varying in brightness in 1836 and this was confirmed by 1862. A pulsating variable that grows and shrinks as it changes in brightness, it has been variously classified as an RV Tauri variable, a semiregular variable star, or a Cepheid variable. S Vulpeculae is now confirmed as a classical Cepheid variable with one of the longest known periods at 68 days, although the period has changed several times. As such, it is also one of the cooler and more luminous of the Cepheids, and it lies close to the zone where semiregular variable stars are found. The shape and amplitude of the light curve varies significantly from cycle to cycle and secularly. The apparent magnitude Apparent magnitude () is a measure of the brightness of a star or other astronomical object observed from Earth. An object's ap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

RV Tauri Variable
RV Tauri variables are luminous variable stars that have distinctive light variations with alternating deep and shallow minima. History and discovery German astronomer Friedrich Wilhelm Argelander monitored the distinctive variations in brightness of R Scuti from 1840 to 1850. R Sagittae was noted to be variable in 1859, but it was not until the discovery of RV Tauri by Russian astronomer Lidiya Tseraskaya in 1905 that the class of variable was recognised as distinct. Three spectroscopic groups were identified: * A, ''GK-type'' with spectra unambiguously of type G or K * B, ''Fp(R)'', spectra are inconsistent, with features of F, G, and later classes found together, plus carbon (class R) features * C, ''Fp'', peculiar spectra with generally weak absorption lines and without strong carbon bands RV Tauri stars are further classified into two photometric sub-types based on their light curves: * RVa: these are RV Tauri variables which do not vary in mean brightness * RVb: these a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Henry Draper Catalogue Objects
Henry may refer to: People *Henry (given name) *Henry (surname) * Henry Lau, Canadian singer and musician who performs under the mononym Henry Royalty * Portuguese royalty ** King-Cardinal Henry, King of Portugal ** Henry, Count of Portugal, Henry of Burgundy, Count of Portugal (father of Portugal's first king) ** Prince Henry the Navigator, Infante of Portugal ** Infante Henrique, Duke of Coimbra (born 1949), the sixth in line to Portuguese throne * King of Germany ** Henry the Fowler (876–936), first king of Germany * King of Scots (in name, at least) ** Henry Stuart, Lord Darnley (1545/6–1567), consort of Mary, queen of Scots ** Henry Benedict Stuart, the 'Cardinal Duke of York', brother of Bonnie Prince Charlie, who was hailed by Jacobites as Henry IX * Four kings of Castile: **Henry I of Castile **Henry II of Castile **Henry III of Castile **Henry IV of Castile * Five kings of France, spelt ''Henri'' in Modern French since the Renaissance to italianize the name and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


K-type Supergiants
K-type may refer to: *AEC K-type, a bus chassis *K-type star, a stellar spectral classification *K-type filter, a type of electronic filter *K-type asteroid K-type asteroids are relatively uncommon asteroids with a moderately reddish spectrum shortwards of 0.75 μm, and a slight bluish trend longwards of this. They have a low albedo. Their spectrum resembles that of CV and CO meteorites. A larger K t ...
, an unusual kind of asteroid {{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Objects With Variable Star Designations
Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an aim, target, or objective * Object (grammar), a sentence element, such as a direct object or an indirect object Science, technology, and mathematics Computing * 3D model, a representation of a physical object * Object (computer science), a language mechanism for binding data with methods that operate on that data ** Object-orientation, in which concepts are represented as objects *** Object-oriented programming (OOP), in which an object is an instance of a class or array ** Object (IBM i), the fundamental unit of data storage in the IBM i operating system * Object (image processing), a portion of an image interpreted as a unit * Object file, the output of a compiler or other translator program (also known as "object code") * Object, an in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Classical Cepheid Variables
Classical Cepheids (also known as Population I Cepheids, Type I Cepheids, or Delta Cepheid variables) are a type of Cepheid variable star. They are population I variable stars that exhibit regular radial pulsations with periods of a few days to a few weeks and visual amplitudes from a few tenths of a magnitude to about 2 magnitudes. There exists a well-defined relationship between a classical Cepheid variable's luminosity and pulsation period, securing Cepheids as viable standard candles for establishing the galactic and extragalactic distance scales. Hubble Space Telescope (HST) observations of classical Cepheid variables have enabled firmer constraints on Hubble's law. Classical Cepheids have also been used to clarify many characteristics of our galaxy, such as the local spiral structure and the Sun's height above the galactic plane. Around 800 classical Cepheids are known in the Milky Way galaxy, out of an expected total of over 6,000. Several thousand more are known in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Titanium Oxide
Titanium oxide may refer to: * Titanium dioxide (titanium(IV) oxide), TiO2 * Titanium(II) oxide (titanium monoxide), TiO, a non-stoichiometric oxide * Titanium(III) oxide (dititanium trioxide), Ti2O3 * Ti3O * Ti2O * δ-TiOx (x= 0.68–0.75) * TinO2n−1 where n ranges from 3–9 inclusive, e.g. Ti3O5, Ti4O7, etc. Uses Often used as an active ingredient in sunscreens combined with oxybenzone and octyl methoxycinnamate Octyl methoxycinnamate or ethylhexyl methoxycinnamate (INCI) or octinoxate (USAN), trade names Eusolex 2292 and Uvinul MC80, is an organic compound that is an ingredient in some sunscreens and lip balms. It is an ester formed from methoxycinnam ....Serpone N, Salinaro A, Emeline AV, Horikoshi S, Hidaka H, Zhao JC. 2002. "An in vitro systematic spectroscopic examination of the photostabilities of a random set of commercial sunscreen lotions and their chemical UVB/UVA active agents". ''Photochemical & Photobiological Sciences'' 1(12): 970–981. Used to give the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Apparent Magnitude
Apparent magnitude () is a measure of the brightness of a star or other astronomical object observed from Earth. An object's apparent magnitude depends on its intrinsic luminosity, its distance from Earth, and any extinction of the object's light caused by interstellar dust along the line of sight to the observer. The word ''magnitude'' in astronomy, unless stated otherwise, usually refers to a celestial object's apparent magnitude. The magnitude scale dates back to the ancient Roman astronomer Claudius Ptolemy, whose star catalog listed stars from 1st magnitude (brightest) to 6th magnitude (dimmest). The modern scale was mathematically defined in a way to closely match this historical system. The scale is reverse logarithmic: the brighter an object is, the lower its magnitude number. A difference of 1.0 in magnitude corresponds to a brightness ratio of \sqrt /math>, or about 2.512. For example, a star of magnitude 2.0 is 2.512 times as bright as a star of magnitude 3.0, 6. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Classical Cepheid Variable
Classical Cepheids (also known as Population I Cepheids, Type I Cepheids, or Delta Cepheid variables) are a type of Cepheid variable star. They are population I variable stars that exhibit regular radial pulsations with periods of a few days to a few weeks and visual amplitudes from a few tenths of a magnitude to about 2 magnitudes. There exists a well-defined relationship between a classical Cepheid variable's luminosity and pulsation period, securing Cepheids as viable standard candles for establishing the galactic and extragalactic distance scales. Hubble Space Telescope (HST) observations of classical Cepheid variables have enabled firmer constraints on Hubble's law. Classical Cepheids have also been used to clarify many characteristics of our galaxy, such as the local spiral structure and the Sun's height above the galactic plane. Around 800 classical Cepheids are known in the Milky Way galaxy, out of an expected total of over 6,000. Several thousand more are known in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cepheid Variable
A Cepheid variable () is a type of star that pulsates radially, varying in both diameter and temperature and producing changes in brightness with a well-defined stable period and amplitude. A strong direct relationship between a Cepheid variable's luminosity and pulsation period established Cepheids as important indicators of cosmic benchmarks for scaling galactic and extragalactic distances. This robust characteristic of classical Cepheids was discovered in 1908 by Henrietta Swan Leavitt after studying thousands of variable stars in the Magellanic Clouds. This discovery allows one to know the true luminosity of a Cepheid by simply observing its pulsation period. This in turn allows one to determine the distance to the star, by comparing its known luminosity to its observed brightness. The term ''Cepheid'' originates from Delta Cephei in the constellation Cepheus, identified by John Goodricke in 1784, the first of its type to be so identified. The mechanics of stellar pu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semiregular Variable Star
In astronomy, a semiregular variable star, a type of variable star, is a giant or supergiant of intermediate and late (cooler) spectral type showing considerable periodicity in its light changes, accompanied or sometimes interrupted by various irregularities. Periods lie in the range from 20 to more than 2000 days, while the shapes of the light curves may be rather different and variable with each cycle. The amplitudes may be from several hundredths to several magnitudes (usually 1-2 magnitudes in the V filter). Classification The semiregular variable stars have been sub-divided into four categories for many decades, with a fifth related group defined more recently. The original definitions of the four main groups were formalised in 1958 at the tenth general assembly of the International Astronomical Union (IAU). The General Catalogue of Variable Stars (GCVS) has updated the definitions with some additional information and provided newer reference stars where old examples such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Supergiant
Supergiants are among the most massive and most luminous stars. Supergiant stars occupy the top region of the Hertzsprung–Russell diagram with absolute visual magnitudes between about −3 and −8. The temperature range of supergiant stars spans from about 3,400 K to over 20,000 K. Definition The title supergiant, as applied to a star, does not have a single concrete definition. The term ''giant star'' was first coined by Hertzsprung when it became apparent that the majority of stars fell into two distinct regions of the Hertzsprung–Russell diagram. One region contained larger and more luminous stars of spectral types A to M and received the name ''giant''. Subsequently, as they lacked any measurable parallax, it became apparent that some of these stars were significantly larger and more luminous than the bulk, and the term ''super-giant'' arose, quickly adopted as ''supergiant''. Spectral luminosity class Supergiant stars can be identified on the basis of thei ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]