S (Boolos 1989)
   HOME
*





S (Boolos 1989)
S is an axiomatic set theory set out by George Boolos in his 1989 article, "Iteration Again". S, a first-order theory, is two-sorted because its ontology includes “stages” as well as sets. Boolos designed S to embody his understanding of the “iterative conception of set“ and the associated iterative hierarchy. S has the important property that all axioms of Zermelo set theory ''Z'', except the axiom of extensionality and the axiom of choice, are theorems of S or a slight modification thereof. Ontology Any grouping together of mathematical, abstract, or concrete objects, however formed, is a ''collection'', a synonym for what other set theories refer to as a class. The things that make up a collection are called elements or members. A common instance of a collection is the domain of discourse of a first-order theory. All sets are collections, but there are collections that are not sets. A synonym for collections that are not sets is proper class. An essential task ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Axiomatic Set Theory
Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of ''naive set theory''. After the discovery of Paradoxes of set theory, paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox) various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set theory is co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Von Neumann Universe
In set theory and related branches of mathematics, the von Neumann universe, or von Neumann hierarchy of sets, denoted by ''V'', is the class of hereditary well-founded sets. This collection, which is formalized by Zermelo–Fraenkel set theory (ZFC), is often used to provide an interpretation or motivation of the axioms of ZFC. The concept is named after John von Neumann, although it was first published by Ernst Zermelo in 1930. The rank of a well-founded set is defined inductively as the smallest ordinal number greater than the ranks of all members of the set. In particular, the rank of the empty set is zero, and every ordinal has a rank equal to itself. The sets in ''V'' are divided into the transfinite hierarchy ''Vα'', called the cumulative hierarchy, based on their rank. Definition The cumulative hierarchy is a collection of sets ''V''α indexed by the class of ordinal numbers; in particular, ''V''α is the set of all sets having ranks less than α. Thus there is one set ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Primitive Notion
In mathematics, logic, philosophy, and formal systems, a primitive notion is a concept that is not defined in terms of previously-defined concepts. It is often motivated informally, usually by an appeal to intuition and everyday experience. In an axiomatic theory, relations between primitive notions are restricted by axioms. Some authors refer to the latter as "defining" primitive notions by one or more axioms, but this can be misleading. Formal theories cannot dispense with primitive notions, under pain of infinite regress (per the regress problem). For example, in contemporary geometry, ''point'', ''line'', and ''contains'' are some primitive notions. Instead of attempting to define them, their interplay is ruled (in Hilbert's axiom system) by axioms like "For every two points there exists a line that contains them both". Details Alfred Tarski explained the role of primitive notions as follows: :When we set out to construct a given discipline, we distinguish, first of all, a ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Naive Set Theory
Naive set theory is any of several theories of sets used in the discussion of the foundations of mathematics. Unlike Set theory#Axiomatic set theory, axiomatic set theories, which are defined using Mathematical_logic#Formal_logical_systems, formal logic, naive set theory is defined informally, in natural language. It describes the aspects of Set (mathematics), mathematical sets familiar in discrete mathematics (for example Venn diagrams and symbolic reasoning about their Boolean algebra (logic), Boolean algebra), and suffices for the everyday use of set theory concepts in contemporary mathematics. Sets are of great importance in mathematics; in modern formal treatments, most mathematical objects (numbers, relation (mathematics), relations, function (mathematics), functions, etc.) are defined in terms of sets. Naive set theory suffices for many purposes, while also serving as a stepping-stone towards more formal treatments. Method A ''naive theory'' in the sense of "naive set theo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unrestricted Comprehension
In many popular versions of axiomatic set theory, the axiom schema of specification, also known as the axiom schema of separation, subset axiom scheme or axiom schema of restricted comprehension is an axiom schema. Essentially, it says that any definable subclass of a set is a set. Some mathematicians call it the axiom schema of comprehension, although others use that term for ''unrestricted'' comprehension, discussed below. Because restricting comprehension avoided Russell's paradox, several mathematicians including Zermelo, Fraenkel, and Gödel considered it the most important axiom of set theory. Statement One instance of the schema is included for each formula φ in the language of set theory with free variables among ''x'', ''w''1, ..., ''w''''n'', ''A''. So ''B'' does not occur free in φ. In the formal language of set theory, the axiom schema is: :\forall w_1,\ldots,w_n \, \forall A \, \exists B \, \forall x \, ( x \in B \Leftrightarrow x \in A \land \varphi(x, w_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cantor's Paradox
In set theory, Cantor's paradox states that there is no set of all cardinalities. This is derived from the theorem that there is no greatest cardinal number. In informal terms, the paradox is that the collection of all possible "infinite sizes" is not only infinite, but so infinitely large that its own infinite size cannot be any of the infinite sizes in the collection. The difficulty is handled in axiomatic set theory by declaring that this collection is not a set but a proper class; in von Neumann–Bernays–Gödel set theory it follows from this and the axiom of limitation of size that this proper class must be in bijection with the class of all sets. Thus, not only are there infinitely many infinities, but this infinity is larger than any of the infinities it enumerates. This paradox is named for Georg Cantor, who is often credited with first identifying it in 1899 (or between 1895 and 1897). Like a number of "paradoxes" it is not actually contradictory but merely indicative ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Burali-Forti Paradox
In set theory, a field of mathematics, the Burali-Forti paradox demonstrates that constructing "the set of all ordinal numbers" leads to a contradiction and therefore shows an antinomy in a system that allows its construction. It is named after Cesare Burali-Forti, who, in 1897, published a paper proving a theorem which, unknown to him, contradicted a previously proved result by Cantor. Bertrand Russell subsequently noticed the contradiction, and when he published it in his 1903 book ''Principles of Mathematics'', he stated that it had been suggested to him by Burali-Forti's paper, with the result that it came to be known by Burali-Forti's name. Stated in terms of von Neumann ordinals We will prove this by a deliberational deconstruction. # Let be a set consisting of all ordinal numbers. # is transitive because for every element of (which is an ordinal number and can be any ordinal number) and every element of (i.e. under the definition of Von Neumann ordinals, for every ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Russell's Paradox
In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox discovered by the British philosopher and mathematician Bertrand Russell in 1901. Russell's paradox shows that every set theory that contains an unrestricted comprehension principle leads to contradictions. The paradox had already been discovered independently in 1899 by the German mathematician Ernst Zermelo. However, Zermelo did not publish the idea, which remained known only to David Hilbert, Edmund Husserl, and other academics at the University of Göttingen. At the end of the 1890s, Georg Cantor – considered the founder of modern set theory – had already realized that his theory would lead to a contradiction, which he told Hilbert and Richard Dedekind by letter. According to the unrestricted comprehension principle, for any sufficiently well-defined property, there is the set of all and only the objects that have that property. Let ''R'' be the set of all sets that are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paradox
A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. It is a statement that, despite apparently valid reasoning from true premises, leads to a seemingly self-contradictory or a logically unacceptable conclusion. A paradox usually involves contradictory-yet-interrelated elements that exist simultaneously and persist over time. They result in "persistent contradiction between interdependent elements" leading to a lasting "unity of opposites". In logic, many paradoxes exist that are known to be invalid arguments, yet are nevertheless valuable in promoting critical thinking, while other paradoxes have revealed errors in definitions that were assumed to be rigorous, and have caused axioms of mathematics and logic to be re-examined. One example is Russell's paradox, which questions whether a "list of all lists that do not contain themselves" would include itself, and showed that attempts to found set theory on the identification ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transitive Relation
In mathematics, a relation on a set is transitive if, for all elements , , in , whenever relates to and to , then also relates to . Each partial order as well as each equivalence relation needs to be transitive. Definition A homogeneous relation on the set is a ''transitive relation'' if, :for all , if and , then . Or in terms of first-order logic: :\forall a,b,c \in X: (aRb \wedge bRc) \Rightarrow aRc, where is the infix notation for . Examples As a non-mathematical example, the relation "is an ancestor of" is transitive. For example, if Amy is an ancestor of Becky, and Becky is an ancestor of Carrie, then Amy, too, is an ancestor of Carrie. On the other hand, "is the birth parent of" is not a transitive relation, because if Alice is the birth parent of Brenda, and Brenda is the birth parent of Claire, then this does not imply that Alice is the birth parent of Claire. What is more, it is antitransitive: Alice can ''never'' be the birth parent of Claire. "Is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hierarchy (mathematics)
In mathematics, a hierarchy is a set-theoretical object, consisting of a preorder defined on a set. This is often referred to as an ordered set, though that is an ambiguous term that many authors reserve for partially ordered sets or totally ordered sets. The term ''pre-ordered set'' is unambiguous, and is always synonymous with a mathematical hierarchy. The term ''hierarchy'' is used to stress a '' hierarchical'' relation among the elements. Sometimes, a set comes equipped with a natural hierarchical structure. For example, the set of natural numbers N is equipped with a natural pre-order structure, where n \le n' whenever we can find some other number m so that n + m = n'. That is, n' is bigger than n only because we can get to n' from n ''using'' m. This idea can be applied to any commutative monoid. On the other hand, the set of integers Z requires a more sophisticated argument for its hierarchical structure, since we can always solve the equation n + m = n' by writing m = ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Well-ordered
In mathematics, a well-order (or well-ordering or well-order relation) on a set ''S'' is a total order on ''S'' with the property that every non-empty subset of ''S'' has a least element in this ordering. The set ''S'' together with the well-order relation is then called a well-ordered set. In some academic articles and textbooks these terms are instead written as wellorder, wellordered, and wellordering or well order, well ordered, and well ordering. Every non-empty well-ordered set has a least element. Every element ''s'' of a well-ordered set, except a possible greatest element, has a unique successor (next element), namely the least element of the subset of all elements greater than ''s''. There may be elements besides the least element which have no predecessor (see below for an example). A well-ordered set ''S'' contains for every subset ''T'' with an upper bound a least upper bound, namely the least element of the subset of all upper bounds of ''T'' in ''S''. If ≤ is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]