HOME
*





System U
In mathematical logic, System U and System U− are pure type systems, i.e. special forms of a typed lambda calculus with an arbitrary number of sorts, axioms and rules (or dependencies between the sorts). They were both proved inconsistent by Jean-Yves Girard in 1972. This result led to the realization that Martin-Löf's original 1971 type theory was inconsistent as it allowed the same "Type in Type" behaviour that Girard's paradox exploits. Formal definition System U is defined as a pure type system with * three sorts \; * two axioms \; and * five rules \. System U− is defined the same with the exception of the (\triangle, \ast) rule. The sorts \ast and \square are conventionally called “Type” and “ Kind”, respectively; the sort \triangle doesn't have a specific name. The two axioms describe the containment of types in kinds (\ast:\square) and kinds in \triangle (\square:\triangle). Intuitively, the sorts describe a hierarchy in the ''nature'' of the terms. # A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jean-Yves Girard
Jean-Yves Girard (; born 1947) is a French logician working in proof theory. He is the research director ( emeritus) at the mathematical institute of the University of Aix-Marseille, at Luminy. Biography Jean-Yves Girard is an alumnus of the École normale supérieure de Saint-Cloud. He made a name for himself in the 1970s with his proof of strong normalization in a system of second-order logic called System F. This result gave a new proof of Takeuti's conjecture, which was proven a few years earlier by William W. Tait, Motō Takahashi and Dag Prawitz. For this purpose, he introduced the notion of "reducibility candidate" ("candidat de réducibilité"). He is also credited with the discovery of Girard's paradox, linear logic, the geometry of interaction, ludics, and (satirically) the mustard watch. He obtained the CNRS Silver medal in 1983 and is a member of the French Academy of Sciences. Bibliography * * * * Jean-Yves Girard (2011). ''The Blind Spot: Lectures on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


System F
System F (also polymorphic lambda calculus or second-order lambda calculus) is a typed lambda calculus that introduces, to simply typed lambda calculus, a mechanism of universal quantification over types. System F formalizes parametric polymorphism in programming languages, thus forming a theoretical basis for languages such as Haskell and ML. It was discovered independently by logician Jean-Yves Girard (1972) and computer scientist John C. Reynolds Whereas simply typed lambda calculus has variables ranging over terms, and binders for them, System F additionally has variables ranging over ''types'', and binders for them. As an example, the fact that the identity function can have any type of the form ''A'' → ''A'' would be formalized in System F as the judgement :\vdash \Lambda\alpha. \lambda x^\alpha.x: \forall\alpha.\alpha \to \alpha where \alpha is a type variable. The upper-case \Lambda is traditionally used to denote type-level functions, as opposed to the lower-case \la ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lambda Calculus
Lambda calculus (also written as ''λ''-calculus) is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation that can be used to simulate any Turing machine. It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics. Lambda calculus consists of constructing § lambda terms and performing § reduction operations on them. In the simplest form of lambda calculus, terms are built using only the following rules: * x – variable, a character or string representing a parameter or mathematical/logical value. * (\lambda x.M) – abstraction, function definition (M is a lambda term). The variable x becomes bound in the expression. * (M\ N) – application, applying a function M to an argument N. M and N are lambda terms. The reduction operations include: * (\lambda x.M \rightarrow(\l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


IEEE Computer Society
The Institute of Electrical and Electronics Engineers (IEEE) is a 501(c)(3) professional association for electronic engineering and electrical engineering (and associated disciplines) with its corporate office in New York City and its operations center in Piscataway, New Jersey. The mission of the IEEE is ''advancing technology for the benefit of humanity''. The IEEE was formed from the amalgamation of the American Institute of Electrical Engineers and the Institute of Radio Engineers in 1963. Due to its expansion of scope into so many related fields, it is simply referred to by the letters I-E-E-E (pronounced I-triple-E), except on legal business documents. , it is the world's largest association of technical professionals with more than 423,000 members in over 160 countries around the world. Its objectives are the educational and technical advancement of electrical and electronic engineering, telecommunications, computer engineering and similar disciplines. History Orig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Oxford University Press
Oxford University Press (OUP) is the university press of the University of Oxford. It is the largest university press in the world, and its printing history dates back to the 1480s. Having been officially granted the legal right to print books by decree in 1586, it is the second oldest university press after Cambridge University Press. It is a department of the University of Oxford and is governed by a group of 15 academics known as the Delegates of the Press, who are appointed by the vice-chancellor of the University of Oxford. The Delegates of the Press are led by the Secretary to the Delegates, who serves as OUP's chief executive and as its major representative on other university bodies. Oxford University Press has had a similar governance structure since the 17th century. The press is located on Walton Street, Oxford, opposite Somerville College, in the inner suburb of Jericho. For the last 500 years, OUP has primarily focused on the publication of pedagogical texts and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Naive Set Theory
Naive set theory is any of several theories of sets used in the discussion of the foundations of mathematics. Unlike Set theory#Axiomatic set theory, axiomatic set theories, which are defined using Mathematical_logic#Formal_logical_systems, formal logic, naive set theory is defined informally, in natural language. It describes the aspects of Set (mathematics), mathematical sets familiar in discrete mathematics (for example Venn diagrams and symbolic reasoning about their Boolean algebra (logic), Boolean algebra), and suffices for the everyday use of set theory concepts in contemporary mathematics. Sets are of great importance in mathematics; in modern formal treatments, most mathematical objects (numbers, relation (mathematics), relations, function (mathematics), functions, etc.) are defined in terms of sets. Naive set theory suffices for many purposes, while also serving as a stepping-stone towards more formal treatments. Method A ''naive theory'' in the sense of "naive set theo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Russell's Paradox
In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox discovered by the British philosopher and mathematician Bertrand Russell in 1901. Russell's paradox shows that every set theory that contains an unrestricted comprehension principle leads to contradictions. The paradox had already been discovered independently in 1899 by the German mathematician Ernst Zermelo. However, Zermelo did not publish the idea, which remained known only to David Hilbert, Edmund Husserl, and other academics at the University of Göttingen. At the end of the 1890s, Georg Cantor – considered the founder of modern set theory – had already realized that his theory would lead to a contradiction, which he told Hilbert and Richard Dedekind by letter. According to the unrestricted comprehension principle, for any sufficiently well-defined property, there is the set of all and only the objects that have that property. Let ''R'' be the set of all sets that are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Type Theory
In mathematics, logic, and computer science, a type theory is the formal presentation of a specific type system, and in general type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a foundation of mathematics. Two influential type theories that were proposed as foundations are Alonzo Church's typed λ-calculus and Per Martin-Löf's intuitionistic type theory. Most computerized proof-writing systems use a type theory for their foundation. A common one is Thierry Coquand's Calculus of Inductive Constructions. History Type theory was created to avoid a paradox in a mathematical foundation based on naive set theory and formal logic. Russell's paradox, which was discovered by Bertrand Russell, existed because a set could be defined using "all possible sets", which included itself. Between 1902 and 1908, Bertrand Russell proposed various "theories of type" to fix the problem. By 1908 Russell arrived at a "ramified" theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Curry–Howard Correspondence
In programming language theory and proof theory, the Curry–Howard correspondence (also known as the Curry–Howard isomorphism or equivalence, or the proofs-as-programs and propositions- or formulae-as-types interpretation) is the direct relationship between computer programs and mathematical proofs. It is a generalization of a syntactic analogy between systems of formal logic and computational calculi that was first discovered by the American mathematician Haskell Curry and the logician William Alvin Howard. It is the link between logic and computation that is usually attributed to Curry and Howard, although the idea is related to the operational interpretation of intuitionistic logic given in various formulations by L. E. J. Brouwer, Arend Heyting and Andrey Kolmogorov (see Brouwer–Heyting–Kolmogorov interpretation) and Stephen Kleene (see Realizability). The relationship has been extended to include category theory as the three-way Curry–Howard–Lambek correspondence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Type Inhabitation
In type theory, a branch of mathematical logic, in a given typed calculus, the type inhabitation problem for this calculus is the following problem: given a type \tau and a typing environment \Gamma, does there exist a \lambda-term M such that \Gamma \vdash M : \tau? With an empty type environment, such an M is said to be an inhabitant of \tau. Relationship to logic In the case of simply typed lambda calculus, a type has an inhabitant if and only if its corresponding proposition is a tautology of minimal implicative logic. Similarly, a System F type has an inhabitant if and only if its corresponding proposition is a tautology of intuitionistic second-order logic. Girard's paradox shows that type inhabitation is strongly related to the consistency of a type system with Curry–Howard correspondence. To be sound, such a system must have uninhabited types. Formal properties For most typed calculi, the type inhabitation problem is very hard. Richard Statman proved that for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Type Constructor
In the area of mathematical logic and computer science known as type theory, a type constructor is a feature of a typed formal language that builds new types from old ones. Basic types are considered to be built using nullary type constructors. Some type constructors take another type as an argument, e.g., the constructors for product types, function types, power types and list types. New types can be defined by recursively composing type constructors. For example, simply typed lambda calculus can be seen as a language with a single non-basic type constructor—the function type constructor. Product types can generally be considered "built-in" in typed lambda calculi via currying. Abstractly, a type constructor is an ''n''-ary type operator taking as argument zero or more types, and returning another type. Making use of currying, ''n''-ary type operators can be (re)written as a sequence of applications of unary type operators. Therefore, we can view the type operators as a sim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]