HOME
*





Syntactic Predicate
A syntactic predicate specifies the syntactic validity of applying a production in a formal grammar and is analogous to a semantic predicate that specifies the semantic validity of applying a production. It is a simple and effective means of dramatically improving the recognition strength of an LL parser by providing arbitrary lookahead. In their original implementation, syntactic predicates had the form “( α )?” and could only appear on the left edge of a production. The required syntactic condition α could be any valid context-free grammar fragment. More formally, a syntactic predicate is a form of production intersection, used in parser specifications or in formal grammars. In this sense, the term ''predicate'' has the meaning of a mathematical indicator function. If ''p1'' and ''p2,'' are production rules, the language generated by ''both'' ''p1'' ''and'' ''p2'' is their set intersection. As typically defined or implemented, syntactic predicates implicitly order the pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Formal Grammar
In formal language theory, a grammar (when the context is not given, often called a formal grammar for clarity) describes how to form strings from a language's alphabet that are valid according to the language's syntax. A grammar does not describe the meaning of the strings or what can be done with them in whatever context—only their form. A formal grammar is defined as a set of production rules for such strings in a formal language. Formal language theory, the discipline that studies formal grammars and languages, is a branch of applied mathematics. Its applications are found in theoretical computer science, theoretical linguistics, formal semantics, mathematical logic, and other areas. A formal grammar is a set of rules for rewriting strings, along with a "start symbol" from which rewriting starts. Therefore, a grammar is usually thought of as a language generator. However, it can also sometimes be used as the basis for a "recognizer"—a function in computing that deter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Language
In theoretical computer science and formal language theory, a regular language (also called a rational language) is a formal language that can be defined by a regular expression, in the strict sense in theoretical computer science (as opposed to many modern regular expressions engines, which are augmented with features that allow recognition of non-regular languages). Alternatively, a regular language can be defined as a language recognized by a finite automaton. The equivalence of regular expressions and finite automata is known as Kleene's theorem (after American mathematician Stephen Cole Kleene). In the Chomsky hierarchy, regular languages are the languages generated by Type-3 grammars. Formal definition The collection of regular languages over an alphabet Σ is defined recursively as follows: * The empty language Ø is a regular language. * For each ''a'' ∈ Σ (''a'' belongs to Σ), the singleton language is a regular language. * If ''A'' is a regular language, ''A''* ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Raku Rules
Raku may refer to: * Lake Raku, an artificial lake in Tallinn, Estonia * Raku ware, a type of pottery used in the Japanese tea ceremony * Raku, Nepal, a village in the Karnali Zone * ''RAkU'' (ballet), a ballet by Yuri Possokhov * Raku (programming language), a computer language formerly known as Perl 6 See also * Horse hair raku Horse hair raku is a method of decorating pottery through the application of horsehair and other dry carbonaceous material to the heated ware. The burning carbonaceous material creates smoke patterns and carbon trails on the surface of the heated ..., a method of decorating pottery * Raku-Go, a form of Japanese verbal entertainment {{Disambiguation, geo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




§-Calculus
An adaptive grammar is a formal grammar that explicitly provides mechanisms within the formalism to allow its own production rules to be manipulated. Overview John N. Shutt defines adaptive grammar as a grammatical formalism that allows rule sets (aka sets of production rules) to be explicitly manipulated within a grammar. Types of manipulation include rule addition, deletion, and modification. Early history The first description of grammar adaptivity (though not under that name) in the literature is generallyChristiansen, Henning, "Survey of Adaptable Grammars" ''ACM SIGPLAN Notices'', Vol. 25 No. 11, pp. 35-44, Nov. 1990.Shutt, John N., Recursive Adaptable Grammars', Master’s Thesis, Worcester Polytechnic Institute, 1993. (16 December 2003 emended revision.)Jackson, Quinn Tyler, Adapting to Babel: Adaptivity and Context-Sensitivity in Parsing', Ibis Publications, Plymouth, Massachusetts, March 2006. taken to be in a paper by Alfonso Caracciolo di Forino published in 1963.Cara ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Formal System
A formal system is an abstract structure used for inferring theorems from axioms according to a set of rules. These rules, which are used for carrying out the inference of theorems from axioms, are the logical calculus of the formal system. A formal system is essentially an "axiomatic system". In 1921, David Hilbert proposed to use such a system as the foundation for the knowledge in mathematics. A formal system may represent a well-defined abstraction, system of abstract thought. The term ''formalism'' is sometimes a rough synonym for ''formal system'', but it also refers to a given style of notation, for example, Paul Dirac's bra–ket notation. Background Each formal system is described by primitive Symbol (formal), symbols (which collectively form an Alphabet (computer science), alphabet) to finitely construct a formal language from a set of axioms through inferential rules of formation. The system thus consists of valid formulas built up through finite combinations of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Side Effect (computer Science)
In computer science, an operation, function or expression is said to have a side effect if it modifies some state variable value(s) outside its local environment, which is to say if it has any observable effect other than its primary effect of returning a value to the invoker of the operation. Example side effects include modifying a non-local variable, modifying a static local variable, modifying a mutable argument passed by reference, performing I/O or calling other functions with side-effects. In the presence of side effects, a program's behaviour may depend on history; that is, the order of evaluation matters. Understanding and debugging a function with side effects requires knowledge about the context and its possible histories. Side effects play an important role in the design and analysis of programming languages. The degree to which side effects are used depends on the programming paradigm. For example, imperative programming is commonly used to produce side effects, to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adaptive Grammar
An adaptive grammar is a formal grammar that explicitly provides mechanisms within the formalism to allow its own production rules to be manipulated. Overview John N. Shutt defines adaptive grammar as a grammatical formalism that allows rule sets (aka sets of production rules) to be explicitly manipulated within a grammar. Types of manipulation include rule addition, deletion, and modification. Early history The first description of grammar adaptivity (though not under that name) in the literature is generallyChristiansen, Henning, "Survey of Adaptable Grammars" ''ACM SIGPLAN Notices'', Vol. 25 No. 11, pp. 35-44, Nov. 1990.Shutt, John N., Recursive Adaptable Grammars', Master’s Thesis, Worcester Polytechnic Institute, 1993. (16 December 2003 emended revision.)Jackson, Quinn Tyler, Adapting to Babel: Adaptivity and Context-Sensitivity in Parsing', Ibis Publications, Plymouth, Massachusetts, March 2006. taken to be in a paper by Alfonso Caracciolo di Forino published in 1963.Cara ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q'', there could be other scenarios where ''P'' is true and ''Q'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of the property that says something like or , the property can also be used in more advanced settings. The name is needed because there are operations, such as division and subtraction, that do not have it (for example, ); such operations are ''not'' commutative, and so are referred to as ''noncommutative operations''. The idea that simple operations, such as the multiplication and addition of numbers, are commutative was for many years implicitly assumed. Thus, this property was not named until the 19th century, when mathematics started to become formalized. A similar property exists for binary relations; a binary relation is said to be symmetric if the relation applies regardless of the order of its operands; for example, equality is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Empty String
In formal language theory, the empty string, or empty word, is the unique string of length zero. Formal theory Formally, a string is a finite, ordered sequence of characters such as letters, digits or spaces. The empty string is the special case where the sequence has length zero, so there are no symbols in the string. There is only one empty string, because two strings are only different if they have different lengths or a different sequence of symbols. In formal treatments, the empty string is denoted with ε or sometimes Λ or λ. The empty string should not be confused with the empty language ∅, which is a formal language (i.e. a set of strings) that contains no strings, not even the empty string. The empty string has several properties: * , ε, = 0. Its string length is zero. * ε ⋅ s = s ⋅ ε = s. The empty string is the identity element of the concatenation operation. The set of all strings forms a free monoid with respect to ⋅ and ε. * εR = ε. Reversal o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

String (computer Science)
In computer programming, a string is traditionally a sequence of characters, either as a literal constant or as some kind of variable. The latter may allow its elements to be mutated and the length changed, or it may be fixed (after creation). A string is generally considered as a data type and is often implemented as an array data structure of bytes (or words) that stores a sequence of elements, typically characters, using some character encoding. ''String'' may also denote more general arrays or other sequence (or list) data types and structures. Depending on the programming language and precise data type used, a variable declared to be a string may either cause storage in memory to be statically allocated for a predetermined maximum length or employ dynamic allocation to allow it to hold a variable number of elements. When a string appears literally in source code, it is known as a string literal or an anonymous string. In formal languages, which are used in mathematical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chomsky Hierarchy
In formal language theory, computer science and linguistics, the Chomsky hierarchy (also referred to as the Chomsky–Schützenberger hierarchy) is a containment hierarchy of classes of formal grammars. This hierarchy of grammars was described by Noam Chomsky in 1956. It is also named after Marcel-Paul Schützenberger, who played a crucial role in the development of the theory of formal languages. Formal grammars A formal grammar of this type consists of a finite set of '' production rules'' (''left-hand side'' → ''right-hand side''), where each side consists of a finite sequence of the following symbols: * a finite set of ''nonterminal symbols'' (indicating that some production rule can yet be applied) * a finite set of ''terminal symbols'' (indicating that no production rule can be applied) * a ''start symbol'' (a distinguished nonterminal symbol) A formal grammar provides an axiom schema for (or ''generates'') a ''formal language'', which is a (usually infinite) s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]