HOME
*





Synchronous Rendezvous
In parallel computing, a barrier is a type of synchronization method. A barrier for a group of threads or processes in the source code means any thread/process must stop at this point and cannot proceed until all other threads/processes reach this barrier. Many collective routines and directive-based parallel languages impose implicit barriers. For example, a parallel ''do'' loop in Fortran with OpenMP will not be allowed to continue on any thread until the last iteration is completed. This is in case the program relies on the result of the loop immediately after its completion. In message passing, any global communication (such as reduction or scatter) may imply a barrier. In concurrent computing, a barrier may be in a ''raised'' or ''lowered state''. The term latch is sometimes used to refer to a barrier that starts in the raised state and cannot be re-raised once it is in the lowered state. The term count-down latch is sometimes used to refer to a latch that is automatically lo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parallel Computing
Parallel computing is a type of computation in which many calculations or processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different forms of parallel computing: bit-level, instruction-level, data, and task parallelism. Parallelism has long been employed in high-performance computing, but has gained broader interest due to the physical constraints preventing frequency scaling.S.V. Adve ''et al.'' (November 2008)"Parallel Computing Research at Illinois: The UPCRC Agenda" (PDF). Parallel@Illinois, University of Illinois at Urbana-Champaign. "The main techniques for these performance benefits—increased clock frequency and smarter but increasingly complex architectures—are now hitting the so-called power wall. The computer industry has accepted that future performance increases must largely come from increasing the number of processors (or cores) on a die, rather than m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Synchronization (computer Science)
In computer science, synchronization refers to one of two distinct but related concepts: synchronization of processes, and synchronization of data. ''Process synchronization'' refers to the idea that multiple processes are to join up or handshake at a certain point, in order to reach an agreement or commit to a certain sequence of action. ''Data synchronization'' refers to the idea of keeping multiple copies of a dataset in coherence with one another, or to maintain data integrity. Process synchronization primitives are commonly used to implement data synchronization. The need for synchronization The need for synchronization does not arise merely in multi-processor systems but for any kind of concurrent processes; even in single processor systems. Mentioned below are some of the main needs for synchronization: '' Forks and Joins:'' When a job arrives at a fork point, it is split into N sub-jobs which are then serviced by n tasks. After being serviced, each sub-job waits until al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

OpenMP
OpenMP (Open Multi-Processing) is an application programming interface (API) that supports multi-platform shared-memory multiprocessing programming in C, C++, and Fortran, on many platforms, instruction-set architectures and operating systems, including Solaris, AIX, FreeBSD, HP-UX, Linux, macOS, and Windows. It consists of a set of compiler directives, library routines, and environment variables that influence run-time behavior. OpenMP is managed by the nonprofit technology consortium ''OpenMP Architecture Review Board'' (or ''OpenMP ARB''), jointly defined by a broad swath of leading computer hardware and software vendors, including Arm, AMD, IBM, Intel, Cray, HP, Fujitsu, Nvidia, NEC, Red Hat, Texas Instruments, and Oracle Corporation. OpenMP uses a portable, scalable model that gives programmers a simple and flexible interface for developing parallel applications for platforms ranging from the standard desktop computer to the supercomputer. An application built wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Message Passing
In computer science, message passing is a technique for invoking behavior (i.e., running a program) on a computer. The invoking program sends a message to a process (which may be an actor or object) and relies on that process and its supporting infrastructure to then select and run some appropriate code. Message passing differs from conventional programming where a process, subroutine, or function is directly invoked by name. Message passing is key to some models of concurrency and object-oriented programming. Message passing is ubiquitous in modern computer software. It is used as a way for the objects that make up a program to work with each other and as a means for objects and systems running on different computers (e.g., the Internet) to interact. Message passing may be implemented by various mechanisms, including channels. Overview Message passing is a technique for invoking behavior (i.e., running a program) on a computer. In contrast to the traditional technique of callin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Concurrent Computing
Concurrent computing is a form of computing in which several computations are executed '' concurrently''—during overlapping time periods—instead of ''sequentially—''with one completing before the next starts. This is a property of a system—whether a program, computer, or a network—where there is a separate execution point or "thread of control" for each process. A ''concurrent system'' is one where a computation can advance without waiting for all other computations to complete. Concurrent computing is a form of modular programming. In its paradigm an overall computation is factored into subcomputations that may be executed concurrently. Pioneers in the field of concurrent computing include Edsger Dijkstra, Per Brinch Hansen, and C.A.R. Hoare. Introduction The concept of concurrent computing is frequently confused with the related but distinct concept of parallel computing, Pike, Rob (2012-01-11). "Concurrency is not Parallelism". ''Waza conference'', 11 January ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scalability Testing
Scalability testing, is the testing of a software application to measure its capability to scale up or scale out in terms of any of its non-functional capability. Performance, scalability and reliability testing are usually grouped together by software quality analysts. The main goals of scalability testing are to determine the user limit for the web application and ensure end user experience, under a high load, is not compromised. One example is if a web page can be accessed in a timely fashion with a limited delay in response. Another goal is to check if the server can cope i.e. Will the server crash if it is under a heavy load? Dependent on the application that is being tested, different parameters are tested. If a webpage is being tested, the highest possible number of simultaneous users would be tested. Also dependent on the application being tested is the attributes that are tested - these can include CPU usage, network usage or user experience. Successful testing will pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fork–join Model
In parallel computing, the fork–join model is a way of setting up and executing parallel programs, such that execution branches off in parallel at designated points in the program, to "join" (merge) at a subsequent point and resume sequential execution. Parallel sections may fork recursively until a certain task granularity is reached. Fork–join can be considered a parallel design pattern. It was formulated as early as 1963. By nesting fork–join computations recursively, one obtains a parallel version of the divide and conquer paradigm, expressed by the following generic pseudocode: solve(problem): if problem is small enough: solve problem directly (sequential algorithm) else: for part in subdivide(problem) fork subtask to solve(part) join all subtasks spawned in previous loop return combined results Examples The simple parallel merge sort of CLRS is a fork–join algorithm. mergesort(A, lo, hi): if ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rendezvous (Plan 9)
Rendezvous is a data synchronization mechanism in Plan 9 from Bell Labs. It is a system call that allows two processes to exchange a single datum while synchronizing. The rendezvous call takes a ''tag'' and a ''value'' as its arguments. The tag is typically an address in memory shared by both processes. Calling rendezvous causes a process to sleep until a second rendezvous call with a matching tag occurs. Then, the values are exchanged and both processes are awakened. More complex synchronization mechanisms can be created from this primitive operation. See also mutual exclusion. See also * Synchronous rendezvous * Communicating sequential processes External links Process Sleep and Wakeup on a Shared-memory Multiprocessorby Rob Pike, Dave Presotto, Ken Thompson and Gerard Holzmann Gerard J. Holzmann (born 1951) is a Dutch-American computer scientist and researcher at Bell Labs and NASA, best known as the developer of the SPIN model checker. Biography Holzmann was born i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Memory Barrier
In computing, a memory barrier, also known as a membar, memory fence or fence instruction, is a type of barrier instruction that causes a central processing unit (CPU) or compiler to enforce an ordering constraint on memory operations issued before and after the barrier instruction. This typically means that operations issued prior to the barrier are guaranteed to be performed before operations issued after the barrier. Memory barriers are necessary because most modern CPUs employ performance optimizations that can result in out-of-order execution. This reordering of memory operations (loads and stores) normally goes unnoticed within a single thread of execution, but can cause unpredictable behavior in concurrent programs and device drivers unless carefully controlled. The exact nature of an ordering constraint is hardware dependent and defined by the architecture's memory ordering model. Some architectures provide multiple barriers for enforcing different ordering constraint ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Synchronization
Synchronization is the coordination of events to operate a system in unison. For example, the conductor of an orchestra keeps the orchestra synchronized or ''in time''. Systems that operate with all parts in synchrony are said to be synchronous or ''in sync''—and those that are not are '' asynchronous''. Today, time synchronization can occur between systems around the world through satellite navigation signals and other time and frequency transfer techniques. Navigation and railways Time-keeping and synchronization of clocks is a critical problem in long-distance ocean navigation. Before radio navigation and satellite-based navigation, navigators required accurate time in conjunction with astronomical observations to determine how far east or west their vessel traveled. The invention of an accurate marine chronometer revolutionized marine navigation. By the end of the 19th century, important ports provided time signals in the form of a signal gun, flag, or dropping time ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Concurrency Control
In information technology and computer science, especially in the fields of computer programming, operating systems, multiprocessors, and databases, concurrency control ensures that correct results for Concurrent computing, concurrent operations are generated, while getting those results as quickly as possible. Computer systems, both software and computer hardware, hardware, consist of modules, or components. Each component is designed to operate correctly, i.e., to obey or to meet certain consistency rules. When components that operate concurrently interact by messaging or by sharing accessed data (in Computer memory, memory or Computer data storage, storage), a certain component's consistency may be violated by another component. The general area of concurrency control provides rules, methods, design methodologies, and Scientific theory, theories to maintain the consistency of components operating concurrently while interacting, and thus the consistency and correctness of the who ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]