Sylvester's Formula
In matrix theory, Sylvester's formula or Sylvester's matrix theorem (named after J. J. Sylvester) or Lagrange−Sylvester interpolation expresses an analytic function of a matrix as a polynomial in , in terms of the eigenvalues and eigenvectors of ./ Roger A. Horn and Charles R. Johnson (1991), ''Topics in Matrix Analysis''. Cambridge University Press, Jon F. Claerbout (1976), ''Sylvester's matrix theorem'', a section of ''Fundamentals of Geophysical Data Processing''Online versionat sepwww.stanford.edu, accessed on 2010-03-14. It states that : f(A) = \sum_^k f(\lambda_i) ~A_i ~, where the are the eigenvalues of , and the matrices : A_i \equiv \prod_^k \frac \left(A - \lambda_j I\right) are the corresponding Frobenius covariants of , which are (projection) matrix Lagrange polynomials of . Conditions Sylvester's formula applies for any diagonalizable matrix with distinct eigenvalues, 1, …, ''λ''''k'', and any function defined on some subset of the compl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a "-matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra. Therefore, the study of matrices is a large part of linear algebra, and most properties and operations of abstract linear algebra can be expressed in terms of matrices. For example, matrix multiplication represents composition of linear maps. Not all matrices are related to linear algebra. This is, in particular, the case in graph theory, of incidence matrices, and adjacency matrices. ''This article focuses on matrices related to linear algebra, and, unle ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Arthur Buchheim
Arthur Buchheim (1859-1888) was a British mathematician. His father Carl Adolf Buchheim was professor of German language at King's College London. After attending the City of London School, Arthur Buchheim obtained an open scholarship at New College, Oxford, where he was the favorite student of Henry John Stephen Smith. He then studied at the University of Leipzig as a student of Felix Klein. Eventually, he became mathematical master at the Manchester Grammar School. Buchheim wrote several papers of which some deal with universal algebra. For instance, his work on William Kingdon Clifford's biquaternions and Hermann Grassmann's exterior algebra which he applied to screw theory and non-Euclidean geometry, was cited by Alfred North Whitehead (1898), as well as in Klein's encyclopedia by Élie Cartan (1908) and in more detail by Hermann Rothe (1916). He was also concerned with the matrix theory of Arthur Cayley and James Joseph Sylvester James Joseph Sylvester (3 September 1814 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Resolvent Formalism
In mathematics, the resolvent formalism is a technique for applying concepts from complex analysis to the study of the spectrum of operators on Banach spaces and more general spaces. Formal justification for the manipulations can be found in the framework of holomorphic functional calculus. The resolvent captures the spectral properties of an operator in the analytic structure of the functional. Given an operator , the resolvent may be defined as : R(z;A)= (A-zI)^~. Among other uses, the resolvent may be used to solve the inhomogeneous Fredholm integral equations; a commonly used approach is a series solution, the Liouville–Neumann series. The resolvent of can be used to directly obtain information about the spectral decomposition of . For example, suppose is an isolated eigenvalue in the spectrum of . That is, suppose there exists a simple closed curve C_\lambda in the complex plane that separates from the rest of the spectrum of . Then the residue : -\frac \oin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Holomorphic Functional Calculus
In mathematics, holomorphic functional calculus is functional calculus with holomorphic functions. That is to say, given a holomorphic function ''f'' of a complex argument ''z'' and an operator ''T'', the aim is to construct an operator, ''f''(''T''), which naturally extends the function ''f'' from complex argument to operator argument. More precisely, the functional calculus defines a continuous algebra homomorphism from the holomorphic functions on a neighbourhood of the spectrum of ''T'' to the bounded operators. This article will discuss the case where ''T'' is a bounded linear operator on some Banach space. In particular, ''T'' can be a square matrix with complex entries, a case which will be used to illustrate functional calculus and provide some heuristic insights for the assumptions involved in the general construction. Motivation Need for a general functional calculus In this section ''T'' will be assumed to be a ''n'' × ''n'' matrix with complex entries ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Adjugate Matrix
In linear algebra, the adjugate or classical adjoint of a square matrix is the transpose of its cofactor matrix and is denoted by . It is also occasionally known as adjunct matrix, or "adjoint", though the latter today normally refers to a different concept, the adjoint operator which is the conjugate transpose of the matrix. The product of a matrix with its adjugate gives a diagonal matrix (entries not on the main diagonal are zero) whose diagonal entries are the determinant of the original matrix: :\mathbf \operatorname(\mathbf) = \det(\mathbf) \mathbf, where is the identity matrix of the same size as . Consequently, the multiplicative inverse of an invertible matrix can be found by dividing its adjugate by its determinant. Definition The adjugate of is the transpose of the cofactor matrix of , :\operatorname(\mathbf) = \mathbf^\mathsf. In more detail, suppose is a unital commutative ring and is an matrix with entries from . The -''minor'' of , denoted , is the determ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Unitary Matrix
In linear algebra, a complex square matrix is unitary if its conjugate transpose is also its inverse, that is, if U^* U = UU^* = UU^ = I, where is the identity matrix. In physics, especially in quantum mechanics, the conjugate transpose is referred to as the Hermitian adjoint of a matrix and is denoted by a dagger (†), so the equation above is written U^\dagger U = UU^\dagger = I. The real analogue of a unitary matrix is an orthogonal matrix. Unitary matrices have significant importance in quantum mechanics because they preserve norms, and thus, probability amplitudes. Properties For any unitary matrix of finite size, the following hold: * Given two complex vectors and , multiplication by preserves their inner product; that is, . * is normal (U^* U = UU^*). * is diagonalizable; that is, is unitarily similar to a diagonal matrix, as a consequence of the spectral theorem. Thus, has a decomposition of the form U = VDV^*, where is unitary, and is diagonal and uni ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hermitian Matrix
In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the -th row and -th column, for all indices and : or in matrix form: A \text \quad \iff \quad A = \overline . Hermitian matrices can be understood as the complex extension of real symmetric matrices. If the conjugate transpose of a matrix A is denoted by A^\mathsf, then the Hermitian property can be written concisely as Hermitian matrices are named after Charles Hermite, who demonstrated in 1855 that matrices of this form share a property with real symmetric matrices of always having real eigenvalues. Other, equivalent notations in common use are A^\mathsf = A^\dagger = A^\ast, although note that in quantum mechanics, A^\ast typically means the complex conjugate only, and not the conjugate transpose. Alternative characterizations Hermit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hans Schwerdtfeger
Hans Wilhelm Eduard Schwerdtfeger (9 December 1902 – 26 June 1990) was a German-Canadian-Australian mathematician who worked in Galois theory, matrix theory, theory of groups and their geometries, and complex analysis Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathemati .... "In 1962 he published '' Geometry of Complex Numbers: Circle Geometry, Möbius Transformations, Non-Euclidean Geometry'' which: ... should be in every library, and every expert in classical function theory should be familiar with this material. The author has performed a distinct service by making this material so conveniently accessible in a single book. " - See also * EP matrix References * * {{DEFAULTSORT:Schwerdtfeger, Hans 1902 births 1990 deaths University of Bonn alumni Academic staff of the U ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hermite Interpolation
In numerical analysis, Hermite interpolation, named after Charles Hermite, is a method of polynomial interpolation, which generalizes Lagrange interpolation. Lagrange interpolation allows computing a polynomial of degree less than that takes the same value at given points as a given function. Instead, Hermite interpolation computes a polynomial of degree less than such that the polynomial and its first derivatives have the same values at given points as a given function and its first derivatives. Hermite's method of interpolation is closely related to the Newton's interpolation method, in that both are derived from the calculation of divided differences. However, there are other methods for computing a Hermite interpolating polynomial. One can use linear algebra, by taking the coefficients of the interpolating polynomial as unknowns, and writing as linear equations the constraints that the interpolating polynomial must satisfy. For another method, see . Statement of the pr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complex Numbers
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number a+bi, is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers and are fundamental in many aspects of the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
James Joseph Sylvester
James Joseph Sylvester (3 September 1814 – 15 March 1897) was an English mathematician. He made fundamental contributions to matrix theory, invariant theory, number theory, partition theory, and combinatorics. He played a leadership role in American mathematics in the later half of the 19th century as a professor at the Johns Hopkins University and as founder of the ''American Journal of Mathematics''. At his death, he was a professor at Oxford University. Biography James Joseph was born in London on 3 September 1814, the son of Abraham Joseph, a Jewish merchant. James later adopted the surname Sylvester when his older brother did so upon emigration to the United States—a country which at that time required all immigrants to have a given name, a middle name, and a surname. At the age of 14, Sylvester was a student of Augustus de Morgan at the University of London. His family withdrew him from the University after he was accused of stabbing a fellow student with a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Diagonalizable Matrix
In linear algebra, a square matrix A is called diagonalizable or non-defective if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix P and a diagonal matrix D such that or equivalently (Such D are not unique.) For a finite-dimensional vector space a linear map T:V\to V is called diagonalizable if there exists an ordered basis of V consisting of eigenvectors of T. These definitions are equivalent: if T has a matrix representation T = PDP^ as above, then the column vectors of P form a basis consisting of eigenvectors of and the diagonal entries of D are the corresponding eigenvalues of with respect to this eigenvector basis, A is represented by Diagonalization is the process of finding the above P and Diagonalizable matrices and maps are especially easy for computations, once their eigenvalues and eigenvectors are known. One can raise a diagonal matrix D to a power by simply raising the diagonal entries to that power, and the determi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |