HOME
*





Sumihiro's Theorem
In algebraic geometry, Sumihiro's theorem, introduced by , states that a normal algebraic variety with an action of a torus can be covered Cover or covers may refer to: Packaging * Another name for a lid * Cover (philately), generic term for envelope or package * Album cover, the front of the packaging * Book cover or magazine cover ** Book design ** Back cover copy, part of co ... by torus-invariant affine open subsets. The "normality" in the hypothesis cannot be relaxed. The hypothesis that the group acting on the variety is a torus can also not be relaxed. Notes References *. External links * Theorems in algebraic geometry {{algebraic-geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Variety
In algebraic geometry, an algebraic variety or scheme ''X'' is normal if it is normal at every point, meaning that the local ring at the point is an integrally closed domain. An affine variety ''X'' (understood to be irreducible) is normal if and only if the ring ''O''(''X'') of regular functions on ''X'' is an integrally closed domain. A variety ''X'' over a field is normal if and only if every finite birational morphism from any variety ''Y'' to ''X'' is an isomorphism. Normal varieties were introduced by . Geometric and algebraic interpretations of normality A morphism of varieties is finite if the inverse image of every point is finite and the morphism is proper. A morphism of varieties is birational if it restricts to an isomorphism between dense open subsets. So, for example, the cuspidal cubic curve ''X'' in the affine plane ''A''2 defined by ''x''2 = ''y''3 is not normal, because there is a finite birational morphism ''A''1 → ''X'' (namely, ''t'' maps to (''t''3, ''t''2) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Action (mathematics)
In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group ''acts'' on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it. For example, it acts on the set of all triangles. Similarly, the group of symmetries of a polyhedron acts on the vertices, the edges, and the faces of the polyhedron. A group action on a vector space is called a representation of the group. In the case of a finite-dimensional vector space, it allows one to identify many groups with subgroups of , the group of the invertible matrices of dimension over a field . The symmetric group acts on any set wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maximal Torus
In the mathematical theory of compact Lie groups a special role is played by torus subgroups, in particular by the maximal torus subgroups. A torus in a compact Lie group ''G'' is a compact, connected, abelian Lie subgroup of ''G'' (and therefore isomorphic to the standard torus T''n''). A maximal torus is one which is maximal among such subgroups. That is, ''T'' is a maximal torus if for any torus ''T''′ containing ''T'' we have ''T'' = ''T''′. Every torus is contained in a maximal torus simply by dimensional considerations. A noncompact Lie group need not have any nontrivial tori (e.g. R''n''). The dimension of a maximal torus in ''G'' is called the rank of ''G''. The rank is well-defined since all maximal tori turn out to be conjugate. For semisimple groups the rank is equal to the number of nodes in the associated Dynkin diagram. Examples The unitary group U(''n'') has as a maximal torus the subgroup of all diagonal matrices. That is, : T = \left\. ''T'' is clearl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cover (topology)
In mathematics, and more particularly in set theory, a cover (or covering) of a set X is a collection of subsets of X whose union is all of X. More formally, if C = \lbrace U_\alpha : \alpha \in A \rbrace is an indexed family of subsets U_\alpha\subset X, then C is a cover of X if \bigcup_U_ = X. Thus the collection \lbrace U_\alpha : \alpha \in A \rbrace is a cover of X if each element of X belongs to at least one of the subsets U_. Cover in topology Covers are commonly used in the context of topology. If the set X is a topological space, then a ''cover'' C of X is a collection of subsets \_ of X whose union is the whole space X. In this case we say that C ''covers'' X, or that the sets U_\alpha ''cover'' X. Also, if Y is a (topological) subspace of X, then a ''cover'' of Y is a collection of subsets C=\_ of X whose union contains Y, i.e., C is a cover of Y if :Y \subseteq \bigcup_U_. That is, we may cover Y with either open sets in Y itself, or cover Y by open sets in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]