Sturm Series
In mathematics, the Sturm series associated with a pair of polynomials is named after Jacques Charles François Sturm. Definition Let p_0 and p_1 two univariate polynomials. Suppose that they do not have a common root and the degree of p_0 is greater than the degree of p_1. The ''Sturm series'' is constructed by: : p_i := p_ q_ - p_ \text i \geq 0. This is almost the same algorithm as Euclid's but the remainder p_ has negative sign. Sturm series associated to a characteristic polynomial Let us see now Sturm series p_0,p_1,\dots,p_k associated to a characteristic polynomial In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients. The chara ... P in the variable \lambda: : P(\lambda)= a_0 \lambda^k + a_1 \lambda^ + \cdots + a_ \lambda + a_k where a_i for i in \ are rational functions in \mathbb(Z) wit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry. Etymology The word ''polynomial'' join ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jacques Charles François Sturm
Jacques Charles François Sturm (29 September 1803 – 15 December 1855) was a French mathematician. Life and work Sturm was born in Geneva (then part of France) in 1803. The family of his father, Jean-Henri Sturm, had emigrated from Strasbourg around 1760—about 50 years before Charles-François's birth. His mother's name was Jeanne-Louise-Henriette Gremay. In 1818, he started to follow the lectures of the academy of Geneva. In 1819, the death of his father forced Sturm to give lessons to children of the rich in order to support his own family. In 1823, he became tutor to the son of Madame de Staël. At the end of 1823, Sturm stayed in Paris for a short time following the family of his student. He resolved, with his school-fellow Jean-Daniel Colladon, to try his fortune in Paris, and obtained employment on the ''Bulletin universel''. In 1829, he discovered the theorem that bears his name, and concerns real-root isolation, that is the determination of the number and the localiz ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Euclidean Algorithm
In mathematics, the Euclidean algorithm,Some widely used textbooks, such as I. N. Herstein's ''Topics in Algebra'' and Serge Lang's ''Algebra'', use the term "Euclidean algorithm" to refer to Euclidean division or Euclid's algorithm, is an efficient method for computing the greatest common divisor (GCD) of two integers (numbers), the largest number that divides them both without a remainder. It is named after the ancient Greek mathematician Euclid, who first described it in Euclid's Elements, his ''Elements'' (c. 300 BC). It is an example of an ''algorithm'', a step-by-step procedure for performing a calculation according to well-defined rules, and is one of the oldest algorithms in common use. It can be used to reduce Fraction (mathematics), fractions to their Irreducible fraction, simplest form, and is a part of many other number-theoretic and cryptographic calculations. The Euclidean algorithm is based on the principle that the greatest common divisor of two numbers does not ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Characteristic Polynomial
In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients. The characteristic polynomial of an endomorphism of a finite-dimensional vector space is the characteristic polynomial of the matrix of that endomorphism over any base (that is, the characteristic polynomial does not depend on the choice of a basis). The characteristic equation, also known as the determinantal equation, is the equation obtained by equating the characteristic polynomial to zero. In spectral graph theory, the characteristic polynomial of a graph is the characteristic polynomial of its adjacency matrix. Motivation In linear algebra, eigenvalues and eigenvectors play a fundamental role, since, given a linear transformation, an eigenvector is a vector whose direction is not changed by the transformation, and the corresponding eigenva ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |