Strassen's Algorithm
   HOME
*





Strassen's Algorithm
In linear algebra, the Strassen algorithm, named after Volker Strassen, is an algorithm for matrix multiplication. It is faster than the standard matrix multiplication algorithm for large matrices, with a better asymptotic complexity, although the naive algorithm is often better for smaller matrices. The Strassen algorithm is slower than the fastest known algorithms for extremely large matrices, but such galactic algorithms are not useful in practice, as they are much slower for matrices of practical size. For small matrices even faster algorithms exist. Strassen's algorithm works for any ring, such as plus/multiply, but not all semirings, such as min-plus or boolean algebra, where the naive algorithm still works, and so called combinatorial matrix multiplication. History Volker Strassen first published this algorithm in 1969 and thereby proved that the n^3 general matrix multiplication algorithm wasn't optimal. The Strassen algorithm's publication resulted in more rese ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Schönhage–Strassen Algorithm
The Schönhage–Strassen algorithm is an asymptotically fast multiplication algorithm for large integers. It was developed by Arnold Schönhage and Volker Strassen in 1971.A. Schönhage and V. Strassen,Schnelle Multiplikation großer Zahlen, ''Computing'' 7 (1971), pp. 281–292. The run-time bit complexity is, in big O notation, O(n \cdot \log n \cdot \log \log n) for two ''n''-digit numbers. The algorithm uses recursive fast Fourier transforms in rings with 2''n''+1 elements, a specific type of number theoretic transform. The Schönhage–Strassen algorithm was the asymptotically fastest multiplication method known from 1971 until 2007, when a new method, Fürer's algorithm, was announced with lower asymptotic complexity, and is used in the Basic Polynomial Algebra Subprograms (BPAS) open source library. The algorithm does not adapt for polynomials over finite fields though. The current best multiplication algorithm in terms of asymptotic complexity is by David Harvey ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE