Stirling Numbers Of The Second Kind
In mathematics, particularly in combinatorics, a Stirling number of the second kind (or Stirling partition number) is the number of ways to partition a set of ''n'' objects into ''k'' non-empty subsets and is denoted by S(n,k) or \textstyle \left\. Stirling numbers of the second kind occur in the field of mathematics called combinatorics and the study of partitions. They are named after James Stirling. The Stirling numbers of the first and second kind can be understood as inverses of one another when viewed as triangular matrices. This article is devoted to specifics of Stirling numbers of the second kind. Identities linking the two kinds appear in the article on Stirling numbers. Definition The Stirling numbers of the second kind, written S(n,k) or \lbrace\textstyle\rbrace or with other notations, count the number of ways to partition a set of n labelled objects into k nonempty unlabelled subsets. Equivalently, they count the number of different equivalence relations wit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Set Partitions 4; Hasse; Circles
Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electronics and computing *Set (abstract data type), a data type in computer science that is a collection of unique values ** Set (C++), a set implementation in the C++ Standard Library * Set (command), a command for setting values of environment variables in Unix and Microsoft operating-systems * Secure Electronic Transaction, a standard protocol for securing credit card transactions over insecure networks * Single-electron transistor, a device to amplify currents in nanoelectronics * Single-ended triode, a type of electronic amplifier * Set!, a programming syntax in the scheme programming language Biology and psychology * Set (psychology), a set of expectations which shapes perception or thought *Set or sett, a badger's den *Set, a small tuber ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pochhammer Symbol
In mathematics, the falling factorial (sometimes called the descending factorial, falling sequential product, or lower factorial) is defined as the polynomial \begin (x)_n = x^\underline &= \overbrace^ \\ &= \prod_^n(x-k+1) = \prod_^(x-k) . \end The rising factorial (sometimes called the Pochhammer function, Pochhammer polynomial, ascending factorial, — A reprint of the 1950 edition by Chelsea Publishing. rising sequential product, or upper factorial) is defined as \begin x^ = x^\overline &= \overbrace^ \\ &= \prod_^n(x+k-1) = \prod_^(x+k) . \end The value of each is taken to be 1 (an empty product) when n=0. These symbols are collectively called factorial powers. The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation (x)_n, where is a non-negative integer. It may represent ''either'' the rising or the falling factorial, with different articles and authors using different conventions. Pochhammer himself actually used (x)_n with yet another meaning, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monomial
In mathematics, a monomial is, roughly speaking, a polynomial which has only one term. Two definitions of a monomial may be encountered: # A monomial, also called a power product or primitive monomial, is a product of powers of variables with nonnegative integer exponents, or, in other words, a product of variables, possibly with repetitions. For example, x^2yz^3=xxyzzz is a monomial. The constant 1 is a primitive monomial, being equal to the empty product and to x^0 for any variable x. If only a single variable x is considered, this means that a monomial is either 1 or a power x^n of x, with n a positive integer. If several variables are considered, say, x, y, z, then each can be given an exponent, so that any monomial is of the form x^a y^b z^c with a,b,c non-negative integers (taking note that any exponent 0 makes the corresponding factor equal to 1). # A monomial in the first sense multiplied by a nonzero constant, called the coefficient of the monomial. A primitive monomial ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Forward Difference
A finite difference is a mathematical expression of the form . Finite differences (or the associated difference quotients) are often used as approximations of derivatives, such as in numerical differentiation. The difference operator, commonly denoted \Delta, is the operator that maps a function to the function \Delta /math> defined by \Delta x) = f(x+1)-f(x). A difference equation is a functional equation that involves the finite difference operator in the same way as a differential equation involves derivatives. There are many similarities between difference equations and differential equations. Certain recurrence relations can be written as difference equations by replacing iteration notation with finite differences. In numerical analysis, finite differences are widely used for approximating derivatives, and the term "finite difference" is often used as an abbreviation of "finite difference approximation of derivatives". Finite differences were introduced by Brook Taylor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inclusion–exclusion Principle
In combinatorics, the inclusion–exclusion principle is a counting technique which generalizes the familiar method of obtaining the number of elements in the union (set theory), union of two finite sets; symbolically expressed as : , A \cup B, = , A, + , B, - , A \cap B, where ''A'' and ''B'' are two finite sets and , ''S'', indicates the cardinality of a set ''S'' (which may be considered as the number of elements of the set, if the set is Finite set, finite). The formula expresses the fact that the sum of the sizes of the two sets may be too large since some elements may be counted twice. The double-counted elements are those in the intersection (set theory), intersection of the two sets and the count is corrected by subtracting the size of the intersection. The inclusion-exclusion principle, being a generalization of the two-set case, is perhaps more clearly seen in the case of three sets, which for the sets ''A'', ''B'' and ''C'' is given by :, A \cup B \cup C, = , A, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Binomial Coefficients
In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers and is written \tbinom. It is the coefficient of the term in the polynomial expansion of the binomial power ; this coefficient can be computed by the multiplicative formula : \binom nk = \frac, which using factorial notation can be compactly expressed as : \binom = \frac. For example, the fourth power of is : \begin (1 + x)^4 &= \tbinom x^0 + \tbinom x^1 + \tbinom x^2 + \tbinom x^3 + \tbinom x^4 \\ &= 1 + 4x + 6 x^2 + 4x^3 + x^4, \end and the binomial coefficient \tbinom =\tfrac = \tfrac = 6 is the coefficient of the term. Arranging the numbers \tbinom, \tbinom, \ldots, \tbinom in successive rows for gives a triangular array called Pascal's triangle, satisfying the recurrence relation : \binom = \binom + \binom . The binomial coefficients occur in many areas of mathematics, and especia ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Triangular Array
In mathematics and computing, a triangular array of numbers, polynomials, or the like, is a doubly indexed sequence in which each row is only as long as the row's own index. That is, the ''i''th row contains only ''i'' elements. Examples Notable particular examples include these: *The Bell triangle, whose numbers count the Partition of a set, partitions of a set in which a given element is the largest singleton (mathematics), singleton * Catalan's triangle, which counts strings of matched parentheses * Euler's triangle, which counts permutations with a given number of ascents * Floyd's triangle, whose entries are all of the integers in order * Hosoya's triangle, based on the Fibonacci numbers * Lozanić's triangle, used in the mathematics of chemical compounds * Narayana triangle, counting strings of balanced parentheses with a given number of distinct nestings * Pascal's triangle, whose entries are the binomial coefficients Triangular arrays of integers in which each row is symm ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ordered Bell Number
In number theory and enumerative combinatorics, the ordered Bell numbers or Fubini numbers count the weak orderings on a set of n elements. Weak orderings arrange their elements into a sequence allowing ties, such as might arise as the outcome of a horse race. The ordered Bell numbers were studied in the 19th century by Arthur Cayley and William Allen Whitworth. They are named after Eric Temple Bell, who wrote about the Bell numbers, which count the partitions of a set; the ordered Bell numbers count partitions that have been equipped with a total order. Their alternative name, the Fubini numbers, comes from a connection to Guido Fubini and Fubini's theorem on equivalent forms of multiple integrals. Because weak orderings have many names, ordered Bell numbers may also be called by those names, for instance as the numbers of preferential arrangements or the numbers of asymmetric generalized weak orders. These numbers may be computed via a summation formula involving binomial coe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bell Numbers
In combinatorial mathematics, the Bell numbers count the possible partitions of a set. These numbers have been studied by mathematicians since the 19th century, and their roots go back to medieval Japan. In an example of Stigler's law of eponymy, they are named after Eric Temple Bell, who wrote about them in the 1930s. The Bell numbers are denoted B_n, where n is an integer greater than or equal to zero. Starting with B_0 = B_1 = 1, the first few Bell numbers are :1, 1, 2, 5, 15, 52, 203, 877, 4140, \dots . The Bell number B_n counts the different ways to partition a set that has exactly n elements, or equivalently, the equivalence relations on it. B_n also counts the different rhyme schemes for n -line poems. As well as appearing in counting problems, these numbers have a different interpretation, as moments of probability distributions. In particular, B_n is the n -th moment of a Poisson distribution with mean 1. Counting Set partitions In general, B_n is the number o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Enumerative Combinatorics
Enumerative combinatorics is an area of combinatorics that deals with the number of ways that certain patterns can be formed. Two examples of this type of problem are counting combinations and counting permutations. More generally, given an infinite collection of finite sets ''S''''i'' indexed by the natural numbers, enumerative combinatorics seeks to describe a ''counting function'' which counts the number of objects in ''S''''n'' for each ''n''. Although counting the number of elements in a set is a rather broad mathematical problem, many of the problems that arise in applications have a relatively simple combinatorial description. The twelvefold way provides a unified framework for counting permutations, combinations and partitions. The simplest such functions are '' closed formulas'', which can be expressed as a composition of elementary functions such as factorials, powers, and so on. For instance, as shown below, the number of different possible orderings of a deck o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Richard P
Richard is a male given name. It originates, via Old French, from Old Frankish and is a compound of the words descending from Proto-Germanic language">Proto-Germanic ''*rīk-'' 'ruler, leader, king' and ''*hardu-'' 'strong, brave, hardy', and it therefore means 'strong in rule'. Nicknames include "Richie", " Dick", " Dickon", " Dickie", " Rich", " Rick", "Rico (name), Rico", " Ricky", and more. Richard is a common English (the name was introduced into England by the Normans), German and French male name. It's also used in many more languages, particularly Germanic, such as Norwegian, Danish, Swedish, Icelandic, and Dutch, as well as other languages including Irish, Scottish, Welsh and Finnish. Richard is cognate with variants of the name in other European languages, such as the Swedish "Rickard", the Portuguese and Spanish "Ricardo" and the Italian "Riccardo" (see comprehensive variant list below). People named Richard Multiple people with the same name * Richard Anders ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jovan Karamata
Jovan Karamata ( sr-Cyrl, Јован Карамата; February 1, 1902 – August 14, 1967) was a Serbian mathematician and university professor. He is remembered for contributions to analysis, in particular, the Tauberian theory and the theory of slowly varying functions. Considered to be among the most influential Serbian mathematicians of the 20th century, Karamata was one of the founders of the Mathematical Institute of the Serbian Academy of Sciences and Arts, established in 1946. Life Jovan Karamata was born in Zagreb on February 1, 1902, into a family descended from merchants based in the city of Zemun, which was then in Austria-Hungary, and now in Serbia. Being of Aromanian origin, the family traced its roots back to Pyrgoi, Eordaia, West Macedonia ''(his father Ioannis Karamatas was the president of the "Greek Community of Zemun")''; Aromanians mainly lived and still live in the area of modern Greece. Its business affairs on the borders of the Austro-Hungarian and O ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |