HOME
*





Steensgaard's Algorithm
In computer science, Steensgaard's algorithm is a scalable, flow-insensitive, algorithm for pointer analysis. It is often used in compilers, due to its speed (for example, an implementation is available in the LLVM compiler framework). In its original formulation, this algorithm was field-, context-, and array-insensitive. Steensgaard's algorithm is based on ''equality constraints'', as opposed to Andersen's algorithm, which is based on ''subset constraints''. This allows points-to information to be tracked using a union-find data structure. This choice gives the algorithm its characteristic speed; when implemented using a union-find data structure it is linear space and almost linear time in the size of the input program. Bjarne Steensgaard's formulation of the algorithm was in terms of type inference and type checking In computer programming, a type system is a logical system comprising a set of rules that assigns a property called a type to every "term" (a word, phrase, or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical disciplines (including the design and implementation of Computer architecture, hardware and Computer programming, software). Computer science is generally considered an area of research, academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing Vulnerability (computing), security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Progr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pointer Analysis
In computer science, pointer analysis, or points-to analysis, is a static code analysis technique that establishes which pointers, or heap references, can point to which variables, or storage locations. It is often a component of more complex analyses such as escape analysis. A closely related technique is shape analysis. This is the most common colloquial use of the term. A secondary use has ''pointer analysis'' be the collective name for both ''points-to analysis'', defined as above, and alias analysis. Points-to and alias analysis are closely related but not always equivalent problems. Example For the following example program, a points-to analysis would compute that the points-to set of p is . int x; int y; int* p = unknown() ? &x : &y; Introduction As a form of static analysis, fully precise pointer analysis can be shown to be undecidable. Most approaches are sound, but range widely in performance and precision. Many design decisions impact both the precision and perf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compiler
In computing, a compiler is a computer program that translates computer code written in one programming language (the ''source'' language) into another language (the ''target'' language). The name "compiler" is primarily used for programs that translate source code from a high-level programming language to a low-level programming language (e.g. assembly language, object code, or machine code) to create an executable program. Compilers: Principles, Techniques, and Tools by Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman - Second Edition, 2007 There are many different types of compilers which produce output in different useful forms. A ''cross-compiler'' produces code for a different CPU or operating system than the one on which the cross-compiler itself runs. A ''bootstrap compiler'' is often a temporary compiler, used for compiling a more permanent or better optimised compiler for a language. Related software include, a program that translates from a low-level language to a h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

LLVM
LLVM is a set of compiler and toolchain technologies that can be used to develop a front end for any programming language and a back end for any instruction set architecture. LLVM is designed around a language-independent intermediate representation (IR) that serves as a portable, high-level assembly language that can be optimized with a variety of transformations over multiple passes. LLVM is written in C++ and is designed for compile-time, link-time, run-time, and "idle-time" optimization. Originally implemented for C and C++, the language-agnostic design of LLVM has since spawned a wide variety of front ends: languages with compilers that use LLVM (or which do not directly use LLVM but can generate compiled programs as LLVM IR) include ActionScript, Ada, C#, Common Lisp, PicoLisp, Crystal, CUDA, D, Delphi, Dylan, Forth, Fortran, Free Basic, Free Pascal, Graphical G, Halide, Haskell, Java bytecode, Julia, Kotlin, Lua, Objective-C, OpenCL, PostgreSQL's SQL and PLpg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Disjoint-set Data Structure
In computer science, a disjoint-set data structure, also called a union–find data structure or merge–find set, is a data structure that stores a collection of disjoint (non-overlapping) sets. Equivalently, it stores a partition of a set into disjoint subsets. It provides operations for adding new sets, merging sets (replacing them by their union), and finding a representative member of a set. The last operation makes it possible to find out efficiently if any two elements are in the same or different sets. While there are several ways of implementing disjoint-set data structures, in practice they are often identified with a particular implementation called a disjoint-set forest. This is a specialized type of forest which performs unions and finds in near-constant amortized time. To perform a sequence of addition, union, or find operations on a disjoint-set forest with nodes requires total time , where is the extremely slow-growing inverse Ackermann function. Disjo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Type Inference
Type inference refers to the automatic detection of the type of an expression in a formal language. These include programming languages and mathematical type systems, but also natural languages in some branches of computer science and linguistics. Nontechnical explanation Types in a most general view can be associated to a designated use suggesting and restricting the activities possible for an object of that type. Many nouns in language specify such uses. For instance, the word leash indicates a different use than the word line. Calling something a table indicates another designation than calling it firewood, though it might be materially the same thing. While their material properties make things usable for some purposes, they are also subject of particular designations. This is especially the case in abstract fields, namely mathematics and computer science, where the material is finally only bits or formulas. To exclude unwanted, but materially possible uses, the concept of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Type Checking
In computer programming, a type system is a logical system comprising a set of rules that assigns a property called a type to every "term" (a word, phrase, or other set of symbols). Usually the terms are various constructs of a computer program, such as variables, expressions, functions, or modules. A type system dictates the operations that can be performed on a term. For variables, the type system determines the allowed values of that term. Type systems formalize and enforce the otherwise implicit categories the programmer uses for algebraic data types, data structures, or other components (e.g. "string", "array of float", "function returning boolean"). Type systems are often specified as part of programming languages and built into interpreters and compilers, although the type system of a language can be extended by optional tools that perform added checks using the language's original type syntax and grammar. The main purpose of a type system in a programming language ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

C (programming Language)
C (''pronounced like the letter c'') is a General-purpose language, general-purpose computer programming language. It was created in the 1970s by Dennis Ritchie, and remains very widely used and influential. By design, C's features cleanly reflect the capabilities of the targeted CPUs. It has found lasting use in operating systems, device drivers, protocol stacks, though decreasingly for application software. C is commonly used on computer architectures that range from the largest supercomputers to the smallest microcontrollers and embedded systems. A successor to the programming language B (programming language), B, C was originally developed at Bell Labs by Ritchie between 1972 and 1973 to construct utilities running on Unix. It was applied to re-implementing the kernel of the Unix operating system. During the 1980s, C gradually gained popularity. It has become one of the measuring programming language popularity, most widely used programming languages, with C compilers avail ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]