Stable Model Category
   HOME
*





Stable Model Category
In category theory, a branch of mathematics, a stable model category is a pointed model category in which the suspension functor is an equivalence of the homotopy category with itself. The prototypical examples are the category of spectra in the stable homotopy theory In mathematics, stable homotopy theory is the part of homotopy theory (and thus algebraic topology) concerned with all structure and phenomena that remain after sufficiently many applications of the suspension functor. A founding result was the F ... and the category of chain complex of ''R''-modules. On the other hand, the category of pointed topological spaces and the category of pointed simplicial sets are not stable model categories. Any stable model category is equivalent to a category of presheaves of spectra. References * Mark Hovey: ''Model Categories'', 1999, . Category theory {{categorytheory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism compos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pointed Model Category
In mathematics, particularly in homotopy theory, a model category is a category with distinguished classes of morphisms ('arrows') called ' weak equivalences', 'fibrations' and 'cofibrations' satisfying certain axioms relating them. These abstract from the category of topological spaces or of chain complexes (derived category theory). The concept was introduced by . In recent decades, the language of model categories has been used in some parts of algebraic ''K''-theory and algebraic geometry, where homotopy-theoretic approaches led to deep results. Motivation Model categories can provide a natural setting for homotopy theory: the category of topological spaces is a model category, with the homotopy corresponding to the usual theory. Similarly, objects that are thought of as spaces often admit a model category structure, such as the category of simplicial sets. Another model category is the category of chain complexes of ''R''-modules for a commutative ring ''R''. Homotopy theor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spectrum (topology)
In algebraic topology, a branch of mathematics, a spectrum is an object representable functor, representing a Cohomology#Generalized cohomology theories, generalized cohomology theory. Every such cohomology theory is representable, as follows from Brown's representability theorem. This means that, given a cohomology theory\mathcal^*:\text^ \to \text,there exist spaces E^k such that evaluating the cohomology theory in degree k on a space X is equivalent to computing the homotopy classes of maps to the space E^k, that is\mathcal^k(X) \cong \left[X, E^k\right].Note there are several different category (mathematics), categories of spectra leading to many technical difficulties, but they all determine the same homotopy category, known as the stable homotopy category. This is one of the key points for introducing spectra because they form a natural home for stable homotopy theory. The definition of a spectrum There are many variations of the definition: in general, a ''spectrum'' is any s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stable Homotopy Theory
In mathematics, stable homotopy theory is the part of homotopy theory (and thus algebraic topology) concerned with all structure and phenomena that remain after sufficiently many applications of the suspension functor. A founding result was the Freudenthal suspension theorem, which states that given any pointed space X, the homotopy groups \pi_(\Sigma^n X) stabilize for n sufficiently large. In particular, the homotopy groups of spheres \pi_(S^n) stabilize for n\ge k + 2. For example, :\langle \text_\rangle = \Z = \pi_1(S^1)\cong \pi_2(S^2)\cong \pi_3(S^3)\cong\cdots :\langle \eta \rangle = \Z = \pi_3(S^2)\to \pi_4(S^3)\cong \pi_5(S^4)\cong\cdots In the two examples above all the maps between homotopy groups are applications of the suspension functor. The first example is a standard corollary of the Hurewicz theorem, that \pi_n(S^n)\cong \Z. In the second example the Hopf map, \eta, is mapped to its suspension \Sigma\eta, which generates \pi_4(S^3)\cong \Z/2. One of the most i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Presheaf Of Spectra
In algebraic topology, a presheaf of spectra on a topological space ''X'' is a contravariant functor from the category of open subsets of ''X'', where morphisms are inclusions, to the good category of commutative ring spectra. A theorem of Jardine says that such presheaves form a simplicial model category, where ''F'' →''G'' is a weak equivalence if the induced map of homotopy sheaves \pi_* F \to \pi_* G is an isomorphism. A sheaf of spectra is then a fibrant/cofibrant object in that category. The notion is used to define, for example, a derived scheme In algebraic geometry, a derived scheme is a pair (X, \mathcal) consisting of a topological space ''X'' and a sheaf \mathcal either of simplicial commutative rings or of commutative ring spectra on ''X'' such that (1) the pair (X, \pi_0 \mathcal) ... in algebraic geometry. References External links * Algebraic topology {{topology-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]