HOME





Stable Curve
In algebraic geometry, a stable curve is an algebraic curve that is asymptotically stable in the sense of geometric invariant theory. This is equivalent to the condition that it is a Complete variety, complete connected curve whose only singularities are ordinary double points and whose automorphism group is finite. The condition that the automorphism group is finite can be replaced by the condition that it is not of arithmetic genus one and every non-singular rational curve, rational component meets the other components in at least 3 points . A semi-stable curve is one satisfying similar conditions, except that the automorphism group is allowed to be reductive group, reductive rather than finite (or equivalently its connected component may be a algebraic torus, torus). Alternatively the condition that non-singular rational components meet the other components in at least three points is replaced by the condition that they meet in at least two points. Similarly a curve with a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects. The fundamental objects of study in algebraic geometry are algebraic variety, algebraic varieties, which are geometric manifestations of solution set, solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are line (geometry), lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscate of Bernoulli, lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular point of a curve, singular p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Complete Intersection
In commutative algebra, a complete intersection ring is a commutative ring similar to the coordinate rings of varieties that are complete intersections. Informally, they can be thought of roughly as the local rings that can be defined using the "minimum possible" number of relations. For Noetherian local rings, there is the following chain of inclusions: Definition A local complete intersection ring is a Noetherian local ring whose completion is the quotient of a regular local ring by an ideal generated by a regular sequence. Taking the completion is a minor technical complication caused by the fact that not all local rings are quotients of regular ones. For rings that are quotients of regular local rings, which covers most local rings that occur in algebraic geometry, it is not necessary to take completions in the definition. There is an alternative intrinsic definition that does not depend on embedding the ring in a regular local ring. If ''R'' is a Noetherian local ring wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Publications Mathématiques De L'IHÉS
''Publications Mathématiques de l'IHÉS'' is a peer-reviewed mathematical journal. It is published by Springer Science+Business Media on behalf of the Institut des Hautes Études Scientifiques, with the help of the Centre National de la Recherche Scientifique. The journal was established in 1959 and was published at irregular intervals, from one to five volumes a year. It is now biannual. The editor-in-chief is Sébastien Boucksom (CNRS, Institut de Mathématique de Jussieu). See also *''Annals of Mathematics The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as t ...'' *'' Journal of the American Mathematical Society'' *'' Inventiones Mathematicae'' External links * Back issues from 1959 to 2010 Mathematics journals Academic journals established in 1959 Springer Science+Business Me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

ISSN (identifier)
An International Standard Serial Number (ISSN) is an eight-digit to uniquely identify a periodical publication (periodical), such as a magazine. The ISSN is especially helpful in distinguishing between serials with the same title. ISSNs are used in ordering, cataloging, interlibrary loans, and other practices in connection with serial literature. The ISSN system was first drafted as an International Organization for Standardization (ISO) international standard in 1971 and published as ISO 3297 in 1975. ISO subcommittee TC 46/SC 9 is responsible for maintaining the standard. When a serial with the same content is published in more than one media type, a different ISSN is assigned to each media type. For example, many serials are published both in print and electronic media. The ISSN system refers to these types as print ISSN (p-ISSN) and electronic ISSN (e-ISSN). Consequently, as defined in ISO 3297:2007, every serial in the ISSN system is also assigned a linking ISSN ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Doi (identifier)
A digital object identifier (DOI) is a persistent identifier or handle used to uniquely identify various objects, standardized by the International Organization for Standardization (ISO). DOIs are an implementation of the Handle System; they also fit within the URI system (Uniform Resource Identifier). They are widely used to identify academic, professional, and government information, such as journal articles, research reports, data sets, and official publications. A DOI aims to resolve to its target, the information object to which the DOI refers. This is achieved by binding the DOI to metadata about the object, such as a URL where the object is located. Thus, by being actionable and interoperable, a DOI differs from ISBNs or ISRCs which are identifiers only. The DOI system uses the indecs Content Model to represent metadata. The DOI for a document remains fixed over the lifetime of the document, whereas its location and other metadata may change. Referring to an onl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Michael Artin
Michael Artin (; born 28 June 1934) is an American mathematician and a professor emeritus in the Massachusetts Institute of Technology Mathematics Department, known for his contributions to algebraic geometry.Faculty profile
, MIT mathematics department, retrieved 2011-01-03


Life and career

Artin was born in , Germany, and brought up in . His parents were Natalia Naumovna Jasny (Natascha) and

Stable Map
In mathematics, specifically in symplectic topology and algebraic geometry, one can construct the moduli space of stable maps, satisfying specified conditions, from Riemann surfaces into a given symplectic manifold. This moduli space is the essence of the Gromov–Witten invariants, which find application in enumerative geometry and type IIA string theory. The idea of stable map was proposed by Maxim Kontsevich around 1992 and published in . Because the construction is lengthy and difficult, it is carried out here rather than in the Gromov–Witten invariants article itself. Smooth pseudoholomorphic curves Fix a closed symplectic manifold X with symplectic form \omega. Let g and n be natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...s (including zero) and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Moduli Of Algebraic Curves
In algebraic geometry, a moduli space of (algebraic) curves is a geometric space (typically a scheme or an algebraic stack) whose points represent isomorphism classes of algebraic curves. It is thus a special case of a moduli space. Depending on the restrictions applied to the classes of algebraic curves considered, the corresponding moduli problem and the moduli space is different. One also distinguishes between fine and coarse moduli spaces for the same moduli problem. The most basic problem is that of moduli of smooth complete curves of a fixed genus. Over the field of complex numbers these correspond precisely to compact Riemann surfaces of the given genus, for which Bernhard Riemann proved the first results about moduli spaces, in particular their dimensions ("number of parameters on which the complex structure depends"). Moduli stacks of stable curves The moduli stack \mathcal_ classifies families of smooth projective curves, together with their isomorphisms. When g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Representable Functor
In mathematics, particularly category theory, a representable functor is a certain functor from an arbitrary category into the category of sets. Such functors give representations of an abstract category in terms of known structures (i.e. sets and functions) allowing one to utilize, as much as possible, knowledge about the category of sets in other settings. From another point of view, representable functors for a category ''C'' are the functors ''given'' with ''C''. Their theory is a vast generalisation of upper sets in posets, and Yoneda's representability theorem generalizes Cayley's theorem in group theory. Definition Let C be a locally small category and let Set be the category of sets. For each object ''A'' of C let Hom(''A'',–) be the hom functor that maps object ''X'' to the set Hom(''A'',''X''). A functor ''F'' : C → Set is said to be representable if it is naturally isomorphic to Hom(''A'',–) for some object ''A'' of C. A representation of ''F'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hilbert Polynomial
In commutative algebra, the Hilbert function, the Hilbert polynomial, and the Hilbert series of a graded commutative algebra finitely generated over a field are three strongly related notions which measure the growth of the dimension of the homogeneous components of the algebra. These notions have been extended to filtered algebras, and graded or filtered modules over these algebras, as well as to coherent sheaves over projective schemes. The typical situations where these notions are used are the following: * The quotient by a homogeneous ideal of a multivariate polynomial ring, graded by the total degree. * The quotient by an ideal of a multivariate polynomial ring, filtered by the total degree. * The filtration of a local ring by the powers of its maximal ideal. In this case the Hilbert polynomial is called the Hilbert–Samuel polynomial. The Hilbert series of an algebra or a module is a special case of the Hilbert–Poincaré series of a graded vector space. The Hil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Moduli Scheme
In algebraic geometry, a moduli scheme is a moduli space that exists in the category of schemes developed by French mathematician Alexander Grothendieck. Some important moduli problems of algebraic geometry can be satisfactorily solved by means of scheme theory alone, while others require some extension of the 'geometric object' concept (algebraic spaces, algebraic stacks of Michael Artin). History Work of Grothendieck and David Mumford (see geometric invariant theory) opened up this area in the early 1960s. The more algebraic and abstract approach to moduli problems is to set them up as a representable functor question, then apply a criterion that singles out the representable functors for schemes. When this programmatic approach works, the result is a ''fine moduli scheme''. Under the influence of more geometric ideas, it suffices to find a scheme that gives the correct geometric points. This is more like the classical idea that the moduli problem is to express the algebraic st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]