HOME





Spouge's Approximation
In mathematics, Spouge's approximation is a formula for computing an approximation of the gamma function. It was named after John L. Spouge, who defined the formula in a 1994 paper. The formula is a modification of Stirling's approximation, and has the form :\Gamma(z+1) = (z+a)^ e^ \left( c_0 + \sum_^ \frac + \varepsilon_a(z) \right) where ''a'' is an arbitrary positive integer and the coefficients are given by :\begin c_0 &= \sqrt\\ c_k &= \frac (-k+a)^ e^ \qquad k\in\. \end Spouge has proved that, if Re(''z'') > 0 and ''a'' > 2, the relative error in discarding ''ε''''a''(''z'') is bounded by :a^ (2 \pi)^. The formula is similar to the Lanczos approximation, but has some distinct features.* Whereas the Lanczos formula exhibits faster convergence, Spouge's coefficients are much easier to calculate and the error can be set arbitrarily low. The formula is therefore feasible for arbitrary-precision evaluation of the gamma function. However, special care ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gamma Function
In mathematics, the gamma function (represented by Γ, capital Greek alphabet, Greek letter gamma) is the most common extension of the factorial function to complex numbers. Derived by Daniel Bernoulli, the gamma function \Gamma(z) is defined for all complex numbers z except non-positive integers, and for every positive integer z=n, \Gamma(n) = (n-1)!\,.The gamma function can be defined via a convergent improper integral for complex numbers with positive real part: \Gamma(z) = \int_0^\infty t^ e^\textt, \ \qquad \Re(z) > 0\,.The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic function, holomorphic except at zero and the negative integers, where it has simple Zeros and poles, poles. The gamma function has no zeros, so the reciprocal gamma function is an entire function. In fact, the gamma function corresponds to the Mellin transform of the negative exponential functi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stirling's Approximation
In mathematics, Stirling's approximation (or Stirling's formula) is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of n. It is named after James Stirling, though a related but less precise result was first stated by Abraham de Moivre. One way of stating the approximation involves the logarithm of the factorial: \ln(n!) = n\ln n - n +O(\ln n), where the big O notation means that, for all sufficiently large values of n, the difference between \ln(n!) and n\ln n-n will be at most proportional to the logarithm of n. In computer science applications such as the worst-case lower bound for comparison sorting, it is convenient to instead use the binary logarithm, giving the equivalent form \log_2 (n!) = n\log_2 n - n\log_2 e +O(\log_2 n). The error term in either base can be expressed more precisely as \tfrac12\log(2\pi n)+O(\tfrac1n), corresponding to an approximate formula for the factorial itself, n! \sim \sqr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lanczos Approximation
In mathematics, the Lanczos approximation is a method for computing the gamma function numerically, published by Cornelius Lanczos in 1964. It is a practical alternative to the more popular Stirling's approximation for calculating the gamma function with fixed precision. Introduction The Lanczos approximation consists of the formula :\Gamma(z+1) = \sqrt ^ e^ A_g(z) for the gamma function, with :A_g(z) = \frac12p_0(g) + p_1(g) \frac + p_2(g) \frac + \cdots. Here ''g'' is a real constant that may be chosen arbitrarily subject to the restriction that Re(''z''+''g''+) > 0. The coefficients ''p'', which depend on ''g'', are slightly more difficult to calculate (see below). Although the formula as stated here is only valid for arguments in the right complex half-plane, it can be extended to the entire complex plane by the reflection formula, :\Gamma(1-z) \; \Gamma(z) = . The series ''A'' is convergent, and may be truncated to obtain an approximation with the desired pre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arbitrary-precision Arithmetic
In computer science, arbitrary-precision arithmetic, also called bignum arithmetic, multiple-precision arithmetic, or sometimes infinite-precision arithmetic, indicates that calculations are performed on numbers whose digits of precision are potentially limited only by the available memory of the host system. This contrasts with the faster fixed-precision arithmetic found in most arithmetic logic unit (ALU) hardware, which typically offers between 8 and 64 bits of precision. Several modern programming languages have built-in support for bignums, and others have libraries available for arbitrary-precision integer and floating-point math. Rather than storing values as a fixed number of bits related to the size of the processor register, these implementations typically use variable-length arrays of digits. Arbitrary precision is used in applications where the speed of arithmetic is not a limiting factor, or where precise results with very large numbers are required. It should ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gamma And Related Functions
Gamma (; uppercase , lowercase ; ) is the third letter of the Greek alphabet. In the system of Greek numerals it has a value of 3. In Ancient Greek, the letter gamma represented a voiced velar stop . In Modern Greek, this letter normally represents a voiced velar fricative , except before either of the two front vowels (/e/, /i/), where it represents a voiced palatal fricative ; while /g/ in foreign words is instead commonly transcribed as γκ). In the International Phonetic Alphabet and other modern Latin-alphabet based phonetic notations, it represents the voiced velar fricative. History The Greek letter Gamma Γ is a grapheme derived from the Phoenician letter (''gīml'') which was rotated from the right-to-left script of Canaanite to accommodate the Greek language's writing system of left-to-right. The Canaanite grapheme represented the /g/ phoneme in the Canaanite language, and as such is cognate with ''gimel'' ג of the Hebrew alphabet. Based on its name, the l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]