HOME
*



picture info

Speed Skydiving
Speed skydiving is a skydiving competition in which the goal is to achieve and maintain the highest possible terminal velocity. It was developed in the late 1990s and is the fastest non-motorized sport on Earth. The speed, achieved by the human body in free fall, is a function of several factors; including the body's mass, orientation, and skin area and texture. In stable, belly-to-earth position, terminal velocity is about 200 km/h (120 mph). Stable freefall head down position has a terminal speed of 240–290 km/h (around 150–180 mph). Further minimization of drag by streamlining the body allows for speeds over 500 km/h (310 mph). Competition Speed Skydiving is a competition discipline within the sport of Skydiving. The competition objective is for the competitors to fly their body as fast as possible to achieve the highest average vertical speed through a 3 second window. The speed is measured using a Speed Measuring Device (SMD) worn on the c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Skydiving
Parachuting, including also skydiving, is a method of transiting from a high point in the Atmosphere of Earth, atmosphere to the surface of Earth with the aid of gravity, involving the control of speed during the descent using a parachute or parachutes. For human skydiving, it may involve a phase of more or less free-falling (the skydiving segment) which is a period when the parachute has not yet been deployed and the body gradually accelerates to terminal velocity. For cargo parachuting, the parachute descent may begin immediately, such as a parachute-airdrop in the Troposphere, lower atmosphere of Earth, or be significantly delayed, such as in a planetary atmosphere where an object is descending "under parachute" following atmospheric entry from outer space, space, and may begin only after the hypersonic entry phase and initial deceleration that occurs due to aerodynamic drag, friction with the thin upper atmosphere. History Common uses Parachuting is performed a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Marco Hepp
Marco may refer to: People * Marco (given name), people with the given name Marco * Marco (actor) (born 1977), South Korean model and actor * Georg Marco (1863–1923), Romanian chess player of German origin * Tomás Marco (born 1942), Spanish composer and writer on music Places * Marco, Ceará, Brazil, a municipality * Marco, New Zealand, a locality in the Taranaki Region * Marco, Indiana, United States, an unincorporated town * Marco, Missouri, United States, an unincorporated community * Marco Island, Florida, United States, a city and an island Science and technology * Mars Cube One (MarCO), a pair of small satellites which fly by Mars in 2018 * MARCO, a macrophage receptor protein that in humans is encoded by the MARCO gene * Mid-Atlantic Regional Council on the Ocean (MARCO) * Marco, the official window manager of MATE Arts and entertainment * '' Marco: 3000 Leagues in Search of Mother'', a 1976 Japanese anime series, directed by Isao Takahata * ''Marco'' (film), a 1973 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coefficient Of Drag
In fluid dynamics, the drag coefficient (commonly denoted as: c_\mathrm, c_x or c_) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water. It is used in the drag equation in which a lower drag coefficient indicates the object will have less aerodynamic or hydrodynamic drag. The drag coefficient is always associated with a particular surface area. The drag coefficient of any object comprises the effects of the two basic contributors to fluid dynamic drag: skin friction and form drag. The drag coefficient of a lifting airfoil or hydrofoil also includes the effects of lift-induced drag. The drag coefficient of a complete structure such as an aircraft also includes the effects of interference drag. Definition The drag coefficient c_\mathrm d is defined as c_\mathrm d = \dfrac where: * F_\mathrm d is the drag force, which is by definition the force component in the direction of the flow veloci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Skin Friction
Skin friction drag is a type of aerodynamic or hydrodynamic drag, which is resistant force exerted on an object moving in a fluid. Skin friction drag is caused by the viscosity of fluids and is developed from laminar drag to turbulent drag as a fluid moves on the surface of an object. Skin friction drag is generally expressed in terms of the Reynolds number, which is the ratio between inertial force and viscous force. Total drag can be decomposed into a skin friction drag component and a pressure drag component, where pressure drag includes all other sources of drag including lift-induced drag. In this conceptualisation, lift-induced drag is an artificial abstraction, part of the horizontal component of the aerodynamic reaction force. Alternatively, total drag can be decomposed into a parasitic drag component and a lift-induced drag component, where parasitic drag is all components of drag except lift-induced drag. In this conceptualisation, skin friction drag is a component of pa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Projected Area
Projected area is the two dimensional area measurement of a three-dimensional object by projecting its shape on to an arbitrary plane. This is often used in mechanical engineering and architectural engineering related fields, specifically hardness testing, axial stress, wind pressures, and terminal velocity. The geometrical definition of a projected area is: "the rectilinear parallel projection In three-dimensional geometry, a parallel projection (or axonometric projection) is a projection of an object in three-dimensional space onto a fixed plane, known as the '' projection plane'' or ''image plane'', where the '' rays'', known as ' ... of a surface of any shape onto a plane". This translates into the equation: A_\text = \int_ \cos \, dA where A is the original area, and \beta is the angle between the normal to the local plane and the line of sight to the surface A. For basic shapes the results are listed in the table below.
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Density
Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematically, density is defined as mass divided by volume: : \rho = \frac where ''ρ'' is the density, ''m'' is the mass, and ''V'' is the volume. In some cases (for instance, in the United States oil and gas industry), density is loosely defined as its weight per unit volume, although this is scientifically inaccurate – this quantity is more specifically called specific weight. For a pure substance the density has the same numerical value as its mass concentration. Different materials usually have different densities, and density may be relevant to buoyancy, purity and packaging. Osmium and iridium are the densest known elements at standard conditions for temperature and pressure. To simplify comparisons of density across different s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Drag Coefficient
In fluid dynamics, the drag coefficient (commonly denoted as: c_\mathrm, c_x or c_) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water. It is used in the drag equation in which a lower drag coefficient indicates the object will have less aerodynamic or hydrodynamic drag. The drag coefficient is always associated with a particular surface area. The drag coefficient of any object comprises the effects of the two basic contributors to fluid dynamic drag: skin friction and form drag. The drag coefficient of a lifting airfoil or hydrofoil also includes the effects of lift-induced drag. The drag coefficient of a complete structure such as an aircraft also includes the effects of interference drag. Definition The drag coefficient c_\mathrm d is defined as c_\mathrm d = \dfrac where: * F_\mathrm d is the drag force, which is by definition the force component in the direction of the flow velo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Earth's Gravity
The gravity of Earth, denoted by , is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation). It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm g=\, \mathit\, . In SI units this acceleration is expressed in metres per second squared (in symbols, m/ s2 or m·s−2) or equivalently in newtons per kilogram (N/kg or N·kg−1). Near Earth's surface, the gravity acceleration is approximately , which means that, ignoring the effects of air resistance, the speed of an object falling freely will increase by about per second every second. This quantity is sometimes referred to informally as ''little '' (in contrast, the gravitational constant is referred to as ''big ''). The precise strength of Earth's gravity varies depending on location. The nominal "average" value at Earth's surface, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Buoyancy
Buoyancy (), or upthrust, is an upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the pressure at the bottom of a column of fluid is greater than at the top of the column. Similarly, the pressure at the bottom of an object submerged in a fluid is greater than at the top of the object. The pressure difference results in a net upward force on the object. The magnitude of the force is proportional to the pressure difference, and (as explained by Archimedes' principle) is equivalent to the weight of the fluid that would otherwise occupy the submerged volume of the object, i.e. the displaced fluid. For this reason, an object whose average density is greater than that of the fluid in which it is submerged tends to sink. If the object is less dense than the liquid, the force can keep the object afloat. This can occur only in a n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Terminal Velocity
Terminal velocity is the maximum velocity (speed) attainable by an object as it falls through a fluid ( air is the most common example). It occurs when the sum of the drag force (''Fd'') and the buoyancy is equal to the downward force of gravity (''FG'') acting on the object. Since the net force on the object is zero, the object has zero acceleration. In fluid dynamics an object is moving at its terminal velocity if its speed is constant due to the restraining force exerted by the fluid through which it is moving. As the speed of an object increases, so does the drag force acting on it, which also depends on the substance it is passing through (for example air or water). At some speed, the drag or force of resistance will equal the gravitational pull on the object (buoyancy is considered below). At this point the object stops accelerating and continues falling at a constant speed called the terminal velocity (also called settling velocity). An object moving downward faster t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]