Smith–Minkowski–Siegel Mass Formula
   HOME
*





Smith–Minkowski–Siegel Mass Formula
In mathematics, the Smith–Minkowski–Siegel mass formula (or Minkowski–Siegel mass formula) is a formula for the sum of the weights of the lattices (quadratic forms) in a genus, weighted by the reciprocals of the orders of their automorphism groups. The mass formula is often given for integral quadratic forms, though it can be generalized to quadratic forms over any algebraic number field. In 0 and 1 dimensions the mass formula is trivial, in 2 dimensions it is essentially equivalent to Dirichlet's class number formulas for imaginary quadratic fields, and in 3 dimensions some partial results were given by Gotthold Eisenstein. The mass formula in higher dimensions was first given by , though his results were forgotten for many years. It was rediscovered by , and an error in Minkowski's paper was found and corrected by . Many published versions of the mass formula have errors; in particular the 2-adic densities are difficult to get right, and it is sometimes forgotten that the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadratic Form
In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, :4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong to a fixed field , such as the real or complex numbers, and one speaks of a quadratic form over . If K=\mathbb R, and the quadratic form takes zero only when all variables are simultaneously zero, then it is a definite quadratic form, otherwise it is an isotropic quadratic form. Quadratic forms occupy a central place in various branches of mathematics, including number theory, linear algebra, group theory (orthogonal group), differential geometry (Riemannian metric, second fundamental form), differential topology ( intersection forms of four-manifolds), and Lie theory (the Killing form). Quadratic forms are not to be confused with a quadratic equation, which has only one variable and includes terms of degree two or less. A quadratic form is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bernoulli Polynomial
In mathematics, the Bernoulli polynomials, named after Jacob Bernoulli, combine the Bernoulli numbers and binomial coefficients. They are used for series expansion of functions, and with the Euler–MacLaurin formula. These polynomials occur in the study of many special functions and, in particular, the Riemann zeta function and the Hurwitz zeta function. They are an Appell sequence (i.e. a Sheffer sequence for the ordinary derivative operator). For the Bernoulli polynomials, the number of crossings of the ''x''-axis in the unit interval does not go up with the degree. In the limit of large degree, they approach, when appropriately scaled, the sine and cosine functions. A similar set of polynomials, based on a generating function, is the family of Euler polynomials. Representations The Bernoulli polynomials ''B''''n'' can be defined by a generating function. They also admit a variety of derived representations. Generating functions The generating function for the Be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Siegel Identity
In mathematics, Siegel's identity refers to one of two formulae that are used in the resolution of Diophantine equations. Statement The first formula is : \frac + \frac = 1 . The second is : \frac \cdot\frac + \frac \cdot \frac = 1 . Application The identities are used in translating Diophantine problems connected with integral points on hyperelliptic curves into S-unit equations. See also * Siegel formula References * * * * * {{cite book , title=The Algorithmic Resolution of Diophantine Equations , volume=41 , series=London Mathematical Society Student Texts , first=N. P. , last=Smart , authorlink=Nigel Smart (cryptographer) , publisher=Cambridge University Press Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing hou ... , year=1998 , isbn=0-521-64633-2 , page36–37, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Weil Conjecture On Tamagawa Numbers
In mathematics, the Weil conjecture on Tamagawa numbers is the statement that the Tamagawa number \tau(G) of a simply connected simple algebraic group defined over a number field is 1. In this case, ''simply connected'' means "not having a proper ''algebraic'' covering" in the algebraic group theory sense, which is not always the topologists' meaning. History calculated the Tamagawa number in many cases of classical groups and observed that it is an integer in all considered cases and that it was equal to 1 in the cases when the group is simply connected. The first observation does not hold for all groups: found examples where the Tamagawa numbers are not integers. The second observation, that the Tamagawa numbers of simply connected semisimple groups seem to be 1, became known as the Weil conjecture. Robert Langlands (1966) introduced harmonic analysis methods to show it for Chevalley groups. K. F. Lai (1980) extended the class of known cases to quasisplit reductive groups. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


André Weil
André Weil (; ; 6 May 1906 – 6 August 1998) was a French mathematician, known for his foundational work in number theory and algebraic geometry. He was a founding member and the ''de facto'' early leader of the mathematical Bourbaki group. The philosopher Simone Weil was his sister. The writer Sylvie Weil is his daughter. Life André Weil was born in Paris to agnostic Alsatian Jewish parents who fled the annexation of Alsace-Lorraine by the German Empire after the Franco-Prussian War in 1870–71. Simone Weil, who would later become a famous philosopher, was Weil's younger sister and only sibling. He studied in Paris, Rome and Göttingen and received his doctorate in 1928. While in Germany, Weil befriended Carl Ludwig Siegel. Starting in 1930, he spent two academic years at Aligarh Muslim University in India. Aside from mathematics, Weil held lifelong interests in classical Greek and Latin literature, in Hinduism and Sanskrit literature: he had taught himself Sanskrit in 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tamagawa Number
In mathematics, the Tamagawa number \tau(G) of a semisimple algebraic group defined over a global field is the measure of G(\mathbb)/G(k), where \mathbb is the adele ring of . Tamagawa numbers were introduced by , and named after him by . Tsuneo Tamagawa's observation was that, starting from an invariant differential form ω on , defined over , the measure involved was well-defined: while could be replaced by with a non-zero element of k, the product formula for valuations in is reflected by the independence from of the measure of the quotient, for the product measure constructed from on each effective factor. The computation of Tamagawa numbers for semisimple groups contains important parts of classical quadratic form theory. Definition Let be a global field, its ring of adeles, and a semisimple algebraic group defined over . Choose Haar measures on the completions such that has volume 1 for all but finitely many places . These then induce a Haar measure on , which w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Niemeier Lattice
In mathematics, a Niemeier lattice is one of the 24 positive definite even unimodular lattices of rank 24, which were classified by . gave a simplified proof of the classification. has a sentence mentioning that he found more than 10 such lattices, but gives no further details. One example of a Niemeier lattice is the Leech lattice. Classification Niemeier lattices are usually labelled by the Dynkin diagram of their root systems. These Dynkin diagrams have rank either 0 or 24, and all of their components have the same Coxeter number. (The Coxeter number, at least in these cases, is the number of roots divided by the dimension.) There are exactly 24 Dynkin diagrams with these properties, and there turns out to be a unique Niemeier lattice for each of these Dynkin diagrams. The complete list of Niemeier lattices is given in the following table. In the table, :''G''0 is the order of the group generated by reflections :''G''1 is the order of the group of automorphisms fixing a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




E8 Lattice
In mathematics, the E lattice is a special lattice in R. It can be characterized as the unique positive-definite, even, unimodular lattice of rank 8. The name derives from the fact that it is the root lattice of the E root system. The normIn this article, the ''norm'' of a vector refers to its length squared (the square of the ordinary norm). of the E lattice (divided by 2) is a positive definite even unimodular quadratic form in 8 variables, and conversely such a quadratic form can be used to construct a positive-definite, even, unimodular lattice of rank 8. The existence of such a form was first shown by H. J. S. Smith in 1867, and the first explicit construction of this quadratic form was given by Korkin and Zolotarev in 1873. The E lattice is also called the Gosset lattice after Thorold Gosset who was one of the first to study the geometry of the lattice itself around 1900. Lattice points The E lattice is a discrete subgroup of R of full rank (i.e. it spans all of R). It ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unimodular Lattice
In geometry and mathematical group theory, a unimodular lattice is an integral lattice of determinant 1 or −1. For a lattice in ''n''-dimensional Euclidean space, this is equivalent to requiring that the volume of any fundamental domain for the lattice be 1. The ''E''8 lattice and the Leech lattice are two famous examples. Definitions * A lattice is a free abelian group of finite rank with a symmetric bilinear form (·, ·). * The lattice is integral if (·,·) takes integer values. * The dimension of a lattice is the same as its rank (as a Z-module). * The norm of a lattice element ''a'' is (''a'', ''a''). * A lattice is positive definite if the norm of all nonzero elements is positive. * The determinant of a lattice is the determinant of the Gram matrix, a matrix with entries (''ai'', ''aj''), where the elements ''ai'' form a basis for the lattice. * An integral lattice is unimodular if its determinant is 1 or −1. * A unimodular lattice is ev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauss Sum
In algebraic number theory, a Gauss sum or Gaussian sum is a particular kind of finite sum of roots of unity, typically :G(\chi) := G(\chi, \psi)= \sum \chi(r)\cdot \psi(r) where the sum is over elements of some finite commutative ring , is a group homomorphism of the additive group into the unit circle, and is a group homomorphism of the unit group into the unit circle, extended to non-unit , where it takes the value 0. Gauss sums are the analogues for finite fields of the Gamma function. Such sums are ubiquitous in number theory. They occur, for example, in the functional equations of Dirichlet -functions, where for a Dirichlet character the equation relating and ) (where is the complex conjugate of ) involves a factor :\frac. History The case originally considered by Carl Friedrich Gauss was the quadratic Gauss sum, for the field of residues modulo a prime number , and the Legendre symbol. In this case Gauss proved that or for congruent to 1 or 3 m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Genus Of A Quadratic Form
In mathematics, the genus is a classification of quadratic forms and lattices over the ring of integers. An integral quadratic form is a quadratic form on Z''n'', or equivalently a free Z-module of finite rank. Two such forms are in the same ''genus'' if they are equivalent over the local rings Z''p'' for each prime ''p'' and also equivalent over R. Equivalent forms are in the same genus, but the converse does not hold. For example, ''x''2 + 82''y''2 and 2''x''2 + 41''y''2 are in the same genus but not equivalent over Z. Forms in the same genus have equal discriminant and hence there are only finitely many equivalence classes in a genus. The Smith–Minkowski–Siegel mass formula gives the ''weight'' or ''mass'' of the quadratic forms in a genus, the count of equivalence classes weighted by the reciprocals of the orders of their automorphism groups. Binary quadratic forms For binary quadratic forms there is a group A group is a number of persons or things that are located, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]