Skorokhod Problem
In probability theory, the Skorokhod problem is the problem of solving a stochastic differential equation with a reflecting boundary condition. The problem is named after Anatoliy Skorokhod who first published the solution to a stochastic differential equation for a reflecting Brownian motion. Problem statement The classic version of the problem states that given a càdlàg process and an M-matrix ''R'', then stochastic processes and are said to solve the Skorokhod problem if for all non-negative ''t'' values, # ''W''(''t'') = ''X''(''t'') + ''R Z''(''t'') ≥ 0 # ''Z''(0) = 0 and d''Z''(''t'') ≥ 0 # \int_0^t W_i(s)\textZ_i(s)=0. The matrix ''R'' is often known as the reflection matrix, ''W''(''t'') as the reflected process and ''Z''(''t'') as the regulator process. See also List of things named after Anatoliy Skorokhod {{Short description, none These are things named after Anatoliy Skorokhod (1930-2011), a Ukrainian m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Probability Theory
Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of non-deterministic or uncertain processes or measured quantities that may either be single occurrences or evolve over time in a random fashion). Although it is not possible to perfectly predict random events, much can be said about their behavior. Two major results in probability ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stochastic Differential Equation
A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs are used to model various phenomena such as stock prices or physical systems subject to thermal fluctuations. Typically, SDEs contain a variable which represents random white noise calculated as the derivative of Brownian motion or the Wiener process. However, other types of random behaviour are possible, such as jump processes. Random differential equations are conjugate to stochastic differential equations. Background Stochastic differential equations originated in the theory of Brownian motion, in the work of Albert Einstein and Smoluchowski. These early examples were linear stochastic differential equations, also called 'Langevin' equations after French physicist Langevin, describing the motion of a harmonic oscillator subject to a random force. The mathematical theory of stochasti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Anatoliy Skorokhod
Anatoliy Volodymyrovych Skorokhod ( uk, Анато́лій Володи́мирович Скорохо́д; September 10, 1930January 3, 2011) was a USSR, Soviet and Ukraine, Ukrainian mathematician. Skorokhod is well-known for a comprehensive treatise on the theory of stochastic processes, co-authored with Iosif Gikhman, Gikhman. In the words of mathematician and probability theorist Daniel W. Stroock “Gikhman and Skorokhod have done an excellent job of presenting the theory in its present state of rich imperfection.” Career Skorokhod worked at Taras Shevchenko National University of Kyiv, Kyiv University from 1956 to 1964. He was subsequently at the Institute of Mathematics of the National Academy of Sciences of Ukraine from 1964 until 2002. Since 1993, he had been a professor at Michigan State University in the US, and a member of the American Academy of Arts and Sciences. He was an academician of the National Academy of Sciences of Ukraine from 1985 to his death in 2011. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Reflecting Brownian Motion
In probability theory, reflected Brownian motion (or regulated Brownian motion, both with the acronym RBM) is a Wiener process in a space with reflecting boundaries. In the physical literature, this process describes diffusion in a confined space and it is often called confined Brownian motion. For example it can describe the motion of hard spheres in water confined between two walls. RBMs have been shown to describe queueing models experiencing heavy traffic as first proposed by Kingman and proven by Iglehart and Whitt. Definition A ''d''–dimensional reflected Brownian motion ''Z'' is a stochastic process on \mathbb R^d_+ uniquely defined by * a ''d''–dimensional drift vector ''μ'' * a ''d''×''d'' non-singular covariance matrix ''Σ'' and * a ''d''×''d'' reflection matrix ''R''. where ''X''(''t'') is an unconstrained Brownian motion and ::Z(t) = X(t) + R Y(t) with ''Y''(''t'') a ''d''–dimensional vector where * ''Y'' is continuous and non–decreasing with ''Y''(0)&n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Queueing Systems
''Queueing Systems'' is a peer-reviewed scientific journal covering queueing theory. It is published by Springer Science+Business Media. The current editor-in-chief is Sergey Foss. According to the ''Journal Citation Reports'', the journal has a 2019 impact factor of 1.114. Editors-in-chief N. U. Prabhu was the founding editor-in-chief when the journal was established in 1986 and remained editor until 1995. Richard F. Serfozo was editor from 1996–2004, and Onno J. Boxma from 2004–2009. Since 2009, the editor has been Sergey Foss. Abstracting and indexing ''Queueing Systems'' is abstracted and indexed in DBLP, Journal Citation Reports, Mathematical Reviews, Research Papers in Economics, SCImago Journal Rank, Scopus, Science Citation Index, Zentralblatt MATH zbMATH Open, formerly Zentralblatt MATH, is a major reviewing service providing reviews and abstracts for articles in pure and applied mathematics, produced by the Berlin office of FIZ Karlsruhe – Leibniz Ins ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Càdlàg
In mathematics, a càdlàg (French: "''continue à droite, limite à gauche''"), RCLL ("right continuous with left limits"), or corlol ("continuous on (the) right, limit on (the) left") function is a function defined on the real numbers (or a subset of them) that is everywhere right-continuous and has left limits everywhere. Càdlàg functions are important in the study of stochastic processes that admit (or even require) jumps, unlike Brownian motion, which has continuous sample paths. The collection of càdlàg functions on a given domain is known as Skorokhod space. Two related terms are càglàd, standing for "continue à gauche, limite à droite", the left-right reversal of càdlàg, and càllàl for "continue à l'un, limite à l’autre" (continuous on one side, limit on the other side), for a function which at each point of the domain is either càdlàg or càglàd. Definition Let be a metric space, and let . A function is called a càdlàg function if, for every , * the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
M-matrix
In mathematics, especially linear algebra, an ''M''-matrix is a ''Z''-matrix with eigenvalues whose real parts are nonnegative. The set of non-singular ''M''-matrices are a subset of the class of ''P''-matrices, and also of the class of inverse-positive matrices (i.e. matrices with inverses belonging to the class of positive matrices). The name ''M''-matrix was seemingly originally chosen by Alexander Ostrowski in reference to Hermann Minkowski, who proved that if a Z-matrix has all of its row sums positive, then the determinant of that matrix is positive.. Characterizations An M-matrix is commonly defined as follows: Definition: Let be a real Z-matrix. That is, where for all . Then matrix ''A'' is also an ''M-matrix'' if it can be expressed in the form , where with , for all , where is at least as large as the maximum of the moduli of the eigenvalues of , and is an identity matrix. For the non-singularity of , according to the Perron–Frobenius theorem, it must be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
List Of Things Named After Anatoliy Skorokhod
{{Short description, none These are things named after Anatoliy Skorokhod (1930-2011), a Ukrainian mathematician. Skorokhod * Skorokhod space * Skorokhod integral * Skorokhod problem Skorokhod's * Skorokhod's theorem: ** Skorokhod's embedding theorem ** Skorokhod's representation theorem In mathematics and statistics, Skorokhod's representation theorem is a result that shows that a weakly convergent sequence of probability measures whose limit measure is sufficiently well-behaved can be represented as the distribution/law of a ... Skorokhod ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |