Shannon Multigraph
   HOME
*



picture info

Shannon Multigraph
In the mathematical discipline of graph theory, Shannon multigraphs, named after Claude Shannon by , are a special type of triangle graphs, which are used in the field of edge coloring in particular. :''A Shannon multigraph is multigraph with 3 vertices for which either of the following conditions holds:'' :*''a) all 3 vertices are connected by the same number of edges.'' :*''b) as in a) and one additional edge is added.'' More precisely one speaks of Shannon multigraph , if the three vertices are connected by \left\lfloor \frac \right\rfloor , \left\lfloor \frac \right\rfloor and \left\lfloor \frac \right\rfloor edges respectively. This multigraph has maximum degree . Its multiplicity (the maximum number of edges in a set of edges that all have the same endpoints) is \left\lfloor \frac \right\rfloor . Examples File:Shannon multigraph 2.svg, Sh(2) File:Shannon multigraph 3.svg, Sh(3) File:Shannon multigraph 4.svg, Sh(4) File:Shannon multigraph 5.svg, Sh(5) File:Shannon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Claude Shannon
Claude Elwood Shannon (April 30, 1916 – February 24, 2001) was an American people, American mathematician, electrical engineering, electrical engineer, and cryptography, cryptographer known as a "father of information theory". As a 21-year-old master's degree student at the Massachusetts Institute of Technology (MIT), he wrote A Symbolic Analysis of Relay and Switching Circuits, his thesis demonstrating that electrical applications of Boolean algebra could construct any logical numerical relationship. Shannon contributed to the field of cryptanalysis for national defense of the United States during World War II, including his fundamental work on codebreaking and secure telecommunications. Biography Childhood The Shannon family lived in Gaylord, Michigan, and Claude was born in a hospital in nearby Petoskey, Michigan, Petoskey. His father, Claude Sr. (1862–1934), was a businessman and for a while, a judge of probate in Gaylord. His mother, Mabel Wolf Shannon (1890–1945), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph (discrete Mathematics)
In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a Set (mathematics), set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called ''Vertex (graph theory), vertices'' (also called ''nodes'' or ''points'') and each of the related pairs of vertices is called an ''edge'' (also called ''link'' or ''line''). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges. Graphs are one of the objects of study in discrete mathematics. The edges may be directed or undirected. For example, if the vertices represent people at a party, and there is an edge between two people if they shake hands, then this graph is undirected because any person ''A'' can shake hands with a person ''B'' only if ''B'' also shakes hands with ''A''. In contrast, if an edge from a person ''A'' to a person ''B'' m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Edge Coloring
In graph theory, an edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blue, and green. Edge colorings are one of several different types of graph coloring. The edge-coloring problem asks whether it is possible to color the edges of a given graph using at most different colors, for a given value of , or with the fewest possible colors. The minimum required number of colors for the edges of a given graph is called the chromatic index of the graph. For example, the edges of the graph in the illustration can be colored by three colors but cannot be colored by two colors, so the graph shown has chromatic index three. By Vizing's theorem, the number of colors needed to edge color a simple graph is either its maximum degree or . For some graphs, such as bipartite graphs and high-degree planar graphs, the number of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multigraph
In mathematics, and more specifically in graph theory, a multigraph is a graph which is permitted to have multiple edges (also called ''parallel edges''), that is, edges that have the same end nodes. Thus two vertices may be connected by more than one edge. There are two distinct notions of multiple edges: * ''Edges without own identity'': The identity of an edge is defined solely by the two nodes it connects. In this case, the term "multiple edges" means that the same edge can occur several times between these two nodes. * ''Edges with own identity'': Edges are primitive entities just like nodes. When multiple edges connect two nodes, these are different edges. A multigraph is different from a hypergraph, which is a graph in which an edge can connect any number of nodes, not just two. For some authors, the terms ''pseudograph'' and ''multigraph'' are synonymous. For others, a pseudograph is a multigraph that is permitted to have loops. Undirected multigraph (edges without ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Degree (graph Theory)
In graph theory, the degree (or valency) of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge. The degree of a vertex v is denoted \deg(v) or \deg v. The maximum degree of a graph G, denoted by \Delta(G), and the minimum degree of a graph, denoted by \delta(G), are the maximum and minimum of its vertices' degrees. In the multigraph shown on the right, the maximum degree is 5 and the minimum degree is 0. In a regular graph, every vertex has the same degree, and so we can speak of ''the'' degree of the graph. A complete graph (denoted K_n, where n is the number of vertices in the graph) is a special kind of regular graph where all vertices have the maximum possible degree, n-1. In a signed graph, the number of positive edges connected to the vertex v is called positive deg(v) and the number of connected negative edges is entitled negative deg(v). Handshaking lemma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vizing's Theorem
In graph theory, Vizing's theorem states that every simple undirected graph may be edge colored using a number of colors that is at most one larger than the maximum degree of the graph. At least colors are always necessary, so the undirected graphs may be partitioned into two classes: "class one" graphs for which colors suffice, and "class two" graphs for which colors are necessary. A more general version of Vizing's theorem states that every undirected multigraph without loops can be colored with at most colors, where is the multiplicity of the multigraph. The theorem is named for Vadim G. Vizing who published it in 1964. Discovery The theorem discovered by Russian mathematician Vadim G. Vizing was published in 1964 when Vizing was working in Novosibirsk and became known as Vizing's theorem. Indian mathematician R. P. Gupta independently discovered the theorem, while undertaking his doctorate (1965-1967). Examples When , the graph must itself be a matching, with no two e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]