Semiabelian Group (Galois Theory)
   HOME





Semiabelian Group (Galois Theory)
Semiabelian groups are a class of groups first introduced by and named by . It appears in Galois theory, in the study of the inverse Galois problem or the embedding problem which is a generalization of the former. Definition The family \mathcal of finite semiabelian groups is the minimal family which contains the trivial group and is closed under the following operations: :* If G \in \mathcal acts on a finite abelian group A, then A\rtimes G\in \mathcal; :* If G\in \mathcal and N\triangleleft G is a normal subgroup, then G/N\in \mathcal. The class of finite groups ''G'' with a regular realizations over \mathbb is closed under taking semidirect products with abelian kernels, and it is also closed under quotients. The class \mathcal is the smallest class of finite groups that have both of these closure properties as mentioned above. Example * Abelian groups, dihedral groups, and all -groups of order less than 64 are semiabelian. * The following are equivalent for a non ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Galois Theory
In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field (mathematics), field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to group theory, which makes them simpler and easier to understand. Galois introduced the subject for studying root of a function, roots of polynomials. This allowed him to characterize the polynomial equations that are solvable by radicals in terms of properties of the permutation group of their roots—an equation is by definition ''solvable by radicals'' if its roots may be expressed by a formula involving only integers, nth root, th roots, and the four basic arithmetic operations. This widely generalizes the Abel–Ruffini theorem, which asserts that a general polynomial of degree at least five cannot be solved by radicals. Galois theory has been used to solve classic problems including showing that two problems of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P-group
In mathematics, specifically group theory, given a prime number ''p'', a ''p''-group is a group in which the order of every element is a power of ''p''. That is, for each element ''g'' of a ''p''-group ''G'', there exists a nonnegative integer ''n'' such that the product of ''pn'' copies of ''g'', and not fewer, is equal to the identity element. The orders of different elements may be different powers of ''p''. Abelian ''p''-groups are also called ''p''-primary or simply primary. A finite group is a ''p''-group if and only if its order (the number of its elements) is a power of ''p''. Given a finite group ''G'', the Sylow theorems guarantee the existence of a subgroup of ''G'' of order ''pn'' for every prime power ''pn'' that divides the order of ''G''. Every finite ''p''-group is nilpotent. The remainder of this article deals with finite ''p''-groups. For an example of an infinite abelian ''p''-group, see Prüfer group, and for an example of an infinite simple ''p' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilbertian Field
In mathematics, a thin set in the sense of Serre, named after Jean-Pierre Serre, is a certain kind of subset constructed in algebraic geometry over a given field ''K'', by allowed operations that are in a definite sense 'unlikely'. The two fundamental ones are: solving a polynomial equation that may or may not be the case; solving within ''K'' a polynomial that does not always factorise. One is also allowed to take finite unions. Formulation More precisely, let ''V'' be an algebraic variety over ''K'' (assumptions here are: ''V'' is an irreducible set, a quasi-projective variety, and ''K'' has characteristic zero). A type I thin set is a subset of ''V''(''K'') that is not Zariski-dense. That means it lies in an algebraic set that is a finite union of algebraic varieties of dimension lower than ''d'', the dimension of ''V''. A type II thin set is an image of an algebraic morphism (essentially a polynomial mapping) φ, applied to the ''K''-points of some other ''d''-dimensional a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Galois Groups
In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory, so named in honor of Évariste Galois who first discovered them. For a more elementary discussion of Galois groups in terms of permutation groups, see the article on Galois theory. Definition Suppose that E is an extension of the field F (written as E/F and read "''E'' over ''F''). An automorphism of E/F is defined to be an automorphism of E that fixes F pointwise. In other words, an automorphism of E/F is an isomorphism \alpha:E\to E such that \alpha(x) = x for each x\in F. The set of all automorphisms of E/F forms a group with the operation of function composition. This group is sometimes denoted by \operatorname(E/F). If E/F is a Galois extension, then \operato ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Field Of Rational Functions
In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field of rational numbers. Intuitively, it consists of ratios between integral domain elements. The field of fractions of an integral domain R is sometimes denoted by \operatorname(R) or \operatorname(R), and the construction is sometimes also called the fraction field, field of quotients, or quotient field of R. All four are in common usage, but are not to be confused with the quotient of a ring by an ideal, which is a quite different concept. For a commutative ring that is not an integral domain, the analogous construction is called the localization or ring of quotients. Definition Given an integral domain R and letting R^* = R \setminus \, we define an equivalence relation on R \times R^* by letting (n,d) \sim (m,b) whenever nb = md. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inverse Galois Problem
In Galois theory, the inverse Galois problem concerns whether or not every finite group appears as the Galois group of some Galois extension of the rational numbers \mathbb. This problem, first posed in the early 19th century, is unsolved. There are some permutation groups for which generic polynomials are known, which define all algebraic extensions of \mathbb having a particular group as Galois group. These groups include all of degree no greater than . There also are groups known not to have generic polynomials, such as the cyclic group of order . More generally, let be a given finite group, and a field. If there is a Galois extension field whose Galois group is isomorphic to , one says that is realizable over . Partial results Many cases are known. It is known that every finite group is realizable over any function field in one variable over the complex numbers \mathbb, and more generally over function fields in one variable over any algebraically closed field of c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Split Extension
Split(s) or The Split may refer to: Places * Split, Croatia, the largest coastal city in Croatia * Split Island, Canada, an island in the Hudson Bay * Split Island, Falkland Islands * Split Island, Fiji, better known as Hạfliua Arts, entertainment, and media Films * ''Split'' (1989 film), a science fiction film * ''Split'' (2016 American film), a psychological horror thriller film * ''Split'' (2016 Canadian film), also known as ''Écartée'', a Canadian drama film directed by Lawrence Côté-Collins * ''Split'' (2016 South Korean film), a sports drama film * '' Split: A Divided America'', a 2008 documentary on American politics * ''The Split'' (film), a 1968 heist film * ''The Split'', or ''The Manster'', a U.S.-Japanese horror film Games * Split (poker), the division of winnings in the card game * Split (blackjack), a possible player decision in the card game Music Albums * ''Split'' (The Groundhogs album), 1971 * ''Split'' (Lush album), 1994 * ''Split'' (Patricia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Epimorphism
In category theory, an epimorphism is a morphism ''f'' : ''X'' → ''Y'' that is right-cancellative in the sense that, for all objects ''Z'' and all morphisms , : g_1 \circ f = g_2 \circ f \implies g_1 = g_2. Epimorphisms are categorical analogues of onto or surjective functions (and in the category of sets the concept corresponds exactly to the surjective functions), but they may not exactly coincide in all contexts; for example, the inclusion \mathbb\to\mathbb is a ring epimorphism. The dual of an epimorphism is a monomorphism (i.e. an epimorphism in a category ''C'' is a monomorphism in the dual category ''C''op). Many authors in abstract algebra and universal algebra define an epimorphism simply as an ''onto'' or surjective homomorphism. Every epimorphism in this algebraic sense is an epimorphism in the sense of category theory, but the converse is not true in all categories. In this article, the term "epimorphism" will be used in the sense of category theory given ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dihedral Group
In mathematics, a dihedral group is the group (mathematics), group of symmetry, symmetries of a regular polygon, which includes rotational symmetry, rotations and reflection symmetry, reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry. The notation for the dihedral group differs in geometry and abstract algebra. In geometry, or refers to the symmetries of the n-gon, -gon, a group of order . In abstract algebra, refers to this same dihedral group. This article uses the geometric convention, . Definition The word "dihedral" comes from "di-" and "-hedron". The latter comes from the Greek word hédra, which means "face of a geometrical solid". Overall it thus refers to the two faces of a polygon. Elements A regular polygon with n sides has 2n different symmetries: n rotational symmetry, rotational symmetries and n reflection symmetry, reflection symmetries. Usually, we take n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inverse Galois Problem
In Galois theory, the inverse Galois problem concerns whether or not every finite group appears as the Galois group of some Galois extension of the rational numbers \mathbb. This problem, first posed in the early 19th century, is unsolved. There are some permutation groups for which generic polynomials are known, which define all algebraic extensions of \mathbb having a particular group as Galois group. These groups include all of degree no greater than . There also are groups known not to have generic polynomials, such as the cyclic group of order . More generally, let be a given finite group, and a field. If there is a Galois extension field whose Galois group is isomorphic to , one says that is realizable over . Partial results Many cases are known. It is known that every finite group is realizable over any function field in one variable over the complex numbers \mathbb, and more generally over function fields in one variable over any algebraically closed field of c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Abelian Kernel
Abelian may refer to: Mathematics Group theory * Abelian group, a group in which the binary operation is commutative ** Category of abelian groups (Ab), has abelian groups as objects and group homomorphisms as morphisms * Metabelian group, a group where the commutator subgroup is abelian * Abelianisation Topology and number theory * Abelian variety, a complex torus that can be embedded into projective space * Abelian surface, a two-dimensional abelian variety * Abelian function, a meromorphic function on an abelian variety * Abelian integral, a function related to the indefinite integral of a differential of the first kind Other mathematics * Abelian category, in category theory, a preabelian category in which every monomorphism is a kernel and every epimorphism is a cokernel * Abelian and Tauberian theorems, in real analysis, used in the summation of divergent series * Abelian extension, in Galois theory, a field extension for which the associated Galois group is abelian * Abeli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Subgroup
In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup N of the group G is normal in G if and only if gng^ \in N for all g \in G and n \in N. The usual notation for this relation is N \triangleleft G. Normal subgroups are important because they (and only they) can be used to construct quotient groups of the given group. Furthermore, the normal subgroups of G are precisely the kernels of group homomorphisms with domain G, which means that they can be used to internally classify those homomorphisms. Évariste Galois was the first to realize the importance of the existence of normal subgroups. Definitions A subgroup N of a group G is called a normal subgroup of G if it is invariant under conjugation; that is, the conjugation of an element of N by an element of G is always in N. The usual notation fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]