HOME
*





Schubert Polynomial
In mathematics, Schubert polynomials are generalizations of Schur polynomials that represent cohomology classes of Schubert cycles in flag varieties. They were introduced by and are named after Hermann Schubert. Background described the history of Schubert polynomials. The Schubert polynomials \mathfrak_w are polynomials in the variables x_1,x_2,\ldots depending on an element w of the infinite symmetric group S_\infty of all permutations of \N fixing all but a finite number of elements. They form a basis for the polynomial ring \Z _1,x_2,\ldots/math> in infinitely many variables. The cohomology of the flag manifold \text(m) is \Z _1, x_2,\ldots, x_mI, where I is the ideal generated by homogeneous symmetric functions of positive degree. The Schubert polynomial \mathfrak_w is the unique homogeneous polynomial of degree \ell(w) representing the Schubert cycle of w in the cohomology of the flag manifold \text(m) for all sufficiently large m. Properties *If w_0 is the permutation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schur Polynomials
In mathematics, Schur polynomials, named after Issai Schur, are certain symmetric polynomials in ''n'' variables, indexed by partitions, that generalize the elementary symmetric polynomials and the complete homogeneous symmetric polynomials. In representation theory they are the characters of polynomial irreducible representations of the general linear groups. The Schur polynomials form a linear basis for the space of all symmetric polynomials. Any product of Schur polynomials can be written as a linear combination of Schur polynomials with non-negative integral coefficients; the values of these coefficients is given combinatorially by the Littlewood–Richardson rule. More generally, skew Schur polynomials are associated with pairs of partitions and have similar properties to Schur polynomials. Definition (Jacobi's bialternant formula) Schur polynomials are indexed by integer partitions. Given a partition , where , and each is a non-negative integer, the functions a_ (x_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stanley Symmetric Function
In mathematics and especially in algebraic combinatorics, the Stanley symmetric functions are a family of symmetric functions introduced by in his study of the symmetric group of permutations. Formally, the Stanley symmetric function ''F''''w''(''x''1, ''x''2, ...) indexed by a permutation ''w'' is defined as a sum of certain fundamental quasisymmetric functions. Each summand corresponds to a reduced decomposition of ''w'', that is, to a way of writing ''w'' as a product of a minimal possible number of adjacent transpositions. They were introduced in the course of Stanley's enumeration of the reduced decompositions of permutations, and in particular his proof that the permutation ''w''0 = ''n''(''n'' − 1)...21 (written here in one-line notation) has exactly : \frac reduced decompositions. (Here \binom denotes the binomial coefficient ''n''(''n'' − 1)/2 and ! denotes the factorial.) Properties The Stanley symmetric function ''F''''w'' is homogeneous with degree e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Representation Theory
Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication). The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories. The algebraic objects amenable to such a description include groups, associative algebras and Lie algebras. The most prominent of these (and historically the first) is the representation theory of groups, in which elements of a group are represented by invertible matrices in such a way that the group operation i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential in in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Duke Mathematical Journal
''Duke Mathematical Journal'' is a peer-reviewed mathematics journal published by Duke University Press. It was established in 1935. The founding editors-in-chief were David Widder, Arthur Coble, and Joseph Miller Thomas Joseph Miller Thomas (16 January 1898 – 1979) was an American mathematician, known for the Thomas decomposition of algebraic and differential systems. Thomas received his Ph.D., supervised by Frederick Wahn Beal, from the University of Pennsylva .... The first issue included a paper by Solomon Lefschetz. Leonard Carlitz served on the editorial board for 35 years, from 1938 to 1973. The current managing editor is Richard Hain (Duke University). Impact According to the journal homepage, the journal has a 2018 impact factor of 2.194, ranking it in the top ten mathematics journals in the world. References External links

* Mathematics journals Duke University, Mathematical Journal Publications established in 1935 Multilingual journals English-language jo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of The American Mathematical Society
The ''Journal of the American Mathematical Society'' (''JAMS''), is a quarterly peer-reviewed mathematical journal published by the American Mathematical Society. It was established in January 1988. Abstracting and indexing This journal is abstracted and indexed in:Indexing and archiving notes
2011. American Mathematical Society. * * * * ISI Ale ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nil-Coxeter Algebra
In mathematics, the nil-Coxeter algebra, introduced by , is an algebra similar to the group algebra of a Coxeter group except that the generators are nilpotent. Definition The nil-Coxeter algebra for the infinite symmetric group is the algebra generated by ''u''1, ''u''2, ''u''3, ... with the relations : \begin u_i^2 & = 0, \\ u_i u_j & = u_j u_i & & \text , i-j, > 1, \\ u_i u_j u_i & = u_j u_i u_j & & \text , i-j, =1. \end These are just the relations for the infinite braid group, together with the relations ''u'' = 0. Similarly one can define a nil-Coxeter algebra for any Coxeter system In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean ref ..., by adding the relations ''u'' = 0 to the relations of the corresponding generalized braid group. Refere ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monk's Formula
In mathematics, Monk's formula, found by , is an analogue of Pieri's formula that describes the product of a linear Schubert polynomial by a Schubert polynomial. Equivalently, it describes the product of a special Schubert cycle by a Schubert cycle in the cohomology of a flag manifold. Write ''t''ij for the transposition ''(i j)'', and ''s''i = ''t''i,i+1. Then 𝔖sr = ''x''1 + ⋯ + ''x''r, and Monk's formula states that for a permutation ''w'', \mathfrak_ \mathfrak_w = \sum_ \mathfrak_, where \ell(w) is the length of ''w''. The pairs (''i'', ''j'') appearing in the sum are exactly those such that ''i'' ≤ ''r'' < ''j'', ''w''i < ''w''j, and there is no ''i'' < ''k'' < ''j'' with ''w''i < ''w''k < ''w''j; each ''wt''ij is a cover of ''w'' in



Kostant Polynomial
In mathematics, the Kostant polynomials, named after Bertram Kostant, provide an explicit basis of the ring of polynomials over the ring of polynomials invariant under the finite reflection group of a root system. Background If the reflection group ''W'' corresponds to the Weyl group of a compact semisimple group ''K'' with maximal torus ''T'', then the Kostant polynomials describe the structure of the de Rham cohomology of the generalized flag manifold ''K''/''T'', also isomorphic to ''G''/''B'' where ''G'' is the complexification of ''K'' and ''B'' is the corresponding Borel subgroup. Armand Borel showed that its cohomology ring is isomorphic to the quotient of the ring of polynomials by the ideal generated by the invariant homogeneous polynomials of positive degree. This ring had already been considered by Claude Chevalley in establishing the foundations of the cohomology of compact Lie groups and their homogeneous spaces with André Weil, Jean-Louis Koszul and Henri Cartan; the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Cohomology
In mathematics, specifically in symplectic topology and algebraic geometry, a quantum cohomology ring is an extension of the ordinary cohomology ring of a closed symplectic manifold. It comes in two versions, called small and big; in general, the latter is more complicated and contains more information than the former. In each, the choice of coefficient ring (typically a Novikov ring, described below) significantly affects its structure, as well. While the cup product of ordinary cohomology describes how submanifolds of the manifold intersect each other, the quantum cup product of quantum cohomology describes how subspaces intersect in a "fuzzy", "quantum" way. More precisely, they intersect if they are connected via one or more pseudoholomorphic curves. Gromov–Witten invariants, which count these curves, appear as coefficients in expansions of the quantum cup product. Because it expresses a structure or pattern for Gromov–Witten invariants, quantum cohomology has importan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schubert Cycle
In algebraic geometry, a Schubert variety is a certain subvariety of a Grassmannian, usually with singular points. Like a Grassmannian, it is a kind of moduli space, whose points correspond to certain kinds of subspaces ''V'', specified using linear algebra, inside a fixed vector subspace ''W''. Here ''W'' may be a vector space over an arbitrary field, though most commonly over the complex numbers. A typical example is the set ''X'' whose points correspond to those 2-dimensional subspaces ''V'' of a 4-dimensional vector space ''W'', such that ''V'' non-trivially intersects a fixed (reference) 2-dimensional subspace ''W''2: :X \ =\ \. Over the real number field, this can be pictured in usual ''xyz''-space as follows. Replacing subspaces with their corresponding projective spaces, and intersecting with an affine coordinate patch of \mathbb(W), we obtain an open subset ''X''° ⊂ ''X''. This is isomorphic to the set of all lines ''L'' (not necessarily through the origin) which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]