HOME
*





Saccheri–Legendre Theorem
In absolute geometry, the Saccheri–Legendre theorem states that the sum of the angles in a triangle is at most 180°. Absolute geometry is the geometry obtained from assuming all the axioms that lead to Euclidean geometry with the exception of the axiom that is equivalent to the parallel postulate of Euclid.There are many axiom systems that yield Euclidean geometry and they all contain an axiom that is logically equivalent to Euclid's parallel postulate. The theorem is named after Giovanni Girolamo Saccheri and Adrien-Marie Legendre. The existence of at least one triangle with angle sum of 180 degrees in absolute geometry implies Euclid's parallel postulate. Similarly, the existence of at least one triangle with angle sum of less than 180 degrees implies the characteristic postulate of hyperbolic geometry. Max Dehn gave an example of a non-Legendrian geometry where the angle sum of a triangle is greater than 180 degrees, and a semi-Euclidean geometry where there is a triangle wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Absolute Geometry
Absolute geometry is a geometry based on an axiom system for Euclidean geometry without the parallel postulate or any of its alternatives. Traditionally, this has meant using only the first four of Euclid's postulates, but since these are not sufficient as a basis of Euclidean geometry, other systems, such as Hilbert's axioms without the parallel axiom, are used. The term was introduced by János Bolyai in 1832. It is sometimes referred to as neutral geometry, as it is neutral with respect to the parallel postulate. Properties It might be imagined that absolute geometry is a rather weak system, but that is not the case. Indeed, in Euclid's ''Elements'', the first 28 Propositions and Proposition 31 avoid using the parallel postulate, and therefore are valid in absolute geometry. One can also prove in absolute geometry the exterior angle theorem (an exterior angle of a triangle is larger than either of the remote angles), as well as the Saccheri–Legendre theorem, which states ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangle
A triangle is a polygon with three Edge (geometry), edges and three Vertex (geometry), vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non-Collinearity, collinear, determine a unique triangle and simultaneously, a unique Plane (mathematics), plane (i.e. a two-dimensional Euclidean space). In other words, there is only one plane that contains that triangle, and every triangle is contained in some plane. If the entire geometry is only the Euclidean plane, there is only one plane and all triangles are contained in it; however, in higher-dimensional Euclidean spaces, this is no longer true. This article is about triangles in Euclidean geometry, and in particular, the Euclidean plane, except where otherwise noted. Types of triangle The terminology for categorizing triangles is more than two thousand years old, having been defined on the very first page of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiomatic System
In mathematics and logic, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually contains an axiomatic system and all its derived theorems. An axiomatic system that is completely described is a special kind of formal system. A formal theory is an axiomatic system (usually formulated within model theory) that describes a set of sentences that is closed under logical implication. A formal proof is a complete rendition of a mathematical proof within a formal system. Properties An axiomatic system is said to be ''consistent'' if it lacks contradiction. That is, it is impossible to derive both a statement and its negation from the system's axioms. Consistency is a key requirement for most axiomatic systems, as the presence of contradiction would allow any statement to be proven (principle of explosion). In an axiomatic syste ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euclidean Geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry: the ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated earlier,. Euclid was the first to organize these propositions into a logic, logical system in which each result is ''mathematical proof, proved'' from axioms and previously proved theorems. The ''Elements'' begins with plane geometry, still taught in secondary school (high school) as the first axiomatic system and the first examples of mathematical proofs. It goes on to the solid geometry of three dimensions. Much of the ''Elements'' states results of what are now called algebra and number theory, explained in geometrical language. For more than two thousand years, the adjective " ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parallel Postulate
In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's ''Elements'', is a distinctive axiom in Euclidean geometry. It states that, in two-dimensional geometry: ''If a line segment intersects two straight lines forming two interior angles on the same side that are less than two right angles, then the two lines, if extended indefinitely, meet on that side on which the angles sum to less than two right angles.'' This postulate does not specifically talk about parallel lines; it is only a postulate related to parallelism. Euclid gave the definition of parallel lines in Book I, Definition 23 just before the five postulates. ''Euclidean geometry'' is the study of geometry that satisfies all of Euclid's axioms, ''including'' the parallel postulate. The postulate was long considered to be obvious or inevitable, but proofs were elusive. Eventually, it was discovered that inverting the postulate gave valid, albeit differ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Giovanni Girolamo Saccheri
Giovanni Girolamo Saccheri (; 5 September 1667 – 25 October 1733) was an Italian Jesuit priest, scholastic philosopher, and mathematician. Saccheri was born in Sanremo. He entered the Jesuit order in 1685 and was ordained as a priest in 1694. He taught philosophy at the University of Turin from 1694 to 1697 and philosophy, theology and mathematics at the University of Pavia from 1697 until his death. He was a protégé of the mathematician Tommaso Ceva and published several works including ''Quaesita geometrica'' (1693), ''Logica demonstrativa'' (1697), and ''Neo-statica'' (1708). Geometrical work He is primarily known today for his last publication, in 1733 shortly before his death. Now considered an early exploration of non-Euclidean geometry, ''Euclides ab omni naevo vindicatus'' (''Euclid Freed of Every Flaw'') languished in obscurity until it was rediscovered by Eugenio Beltrami, in the mid-19th century. The intent of Saccheri's work was ostensibly to establish the vali ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Adrien-Marie Legendre
Adrien-Marie Legendre (; ; 18 September 1752 – 9 January 1833) was a French mathematician who made numerous contributions to mathematics. Well-known and important concepts such as the Legendre polynomials and Legendre transformation are named after him. Life Adrien-Marie Legendre was born in Paris on 18 September 1752 to a wealthy family. He received his education at the Collège Mazarin in Paris, and defended his thesis in physics and mathematics in 1770. He taught at the École Militaire in Paris from 1775 to 1780 and at the École Normale Supérieure, École Normale from 1795. At the same time, he was associated with the Bureau des Longitudes. In 1782, the Prussian Academy of Sciences, Berlin Academy awarded Legendre a prize for his treatise on projectiles in resistant media. This treatise also brought him to the attention of Lagrange. The ''Académie des sciences'' made Legendre an adjoint member in 1783 and an associate in 1785. In 1789, he was elected a Fellow of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperbolic Geometry
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai– Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P'' not on ''R'', in the plane containing both line ''R'' and point ''P'' there are at least two distinct lines through ''P'' that do not intersect ''R''. (Compare the above with Playfair's axiom, the modern version of Euclid's parallel postulate.) Hyperbolic plane geometry is also the geometry of pseudospherical surfaces, surfaces with a constant negative Gaussian curvature. Saddle surfaces have negative Gaussian curvature in at least some regions, where they locally resemble the hyperbolic plane. A modern use of hyperbolic geometry is in the theory of special relativity, particularly the Minkowski model. When geometers first realised they were working with something other than the standard Euclidean geometry, they described their geomet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Max Dehn
Max Wilhelm Dehn (November 13, 1878 – June 27, 1952) was a German mathematician most famous for his work in geometry, topology and geometric group theory. Born to a Jewish family in Germany, Dehn's early life and career took place in Germany. However, he was forced to retire in 1935 and eventually fled Germany in 1939 and emigrated to the United States. Dehn was a student of David Hilbert, and in his habilitation in 1900 Dehn resolved Hilbert's third problem, making him the first to resolve one of Hilbert's well-known 23 problems. Dehn's students include Ott-Heinrich Keller, Ruth Moufang, Wilhelm Magnus, and the artists Dorothea Rockburne and Ruth Asawa. Biography Dehn was born to a family of Jewish origin in Hamburg, Imperial Germany. He studied the foundations of geometry with Hilbert at Göttingen in 1899, and obtained a proof of the Jordan curve theorem for polygons. In 1900 he wrote his dissertation on the role of the Legendre angle sum theorem in axiomatic geome ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Non-Legendrian Geometry
In geometry, Max Dehn introduced two examples of planes, a semi-Euclidean geometry and a non-Legendrian geometry, that have infinitely many lines parallel to a given one that pass through a given point, but where the sum of the angles of a triangle is at least . A similar phenomenon occurs in hyperbolic geometry, except that the sum of the angles of a triangle is less than . Dehn's examples use a non-Archimedean field, so that the Archimedean axiom is violated. They were introduced by and discussed by . Dehn's non-archimedean field Ω(''t'') To construct his geometries, Dehn used a non-Archimedean ordered Pythagorean field Ω(''t''), a Pythagorean closure of the field of rational functions R(''t''), consisting of the smallest field of real-valued functions on the real line containing the real constants, the identity function ''t'' (taking any real number to itself) and closed under the operation \omega \mapsto \sqrt . The field Ω(''t'') is ordered by putting ''x'' >&nb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semi-Euclidean Geometry
In geometry, Max Dehn introduced two examples of planes, a semi-Euclidean geometry and a non-Legendrian geometry, that have infinitely many lines parallel to a given one that pass through a given point, but where the sum of the angles of a triangle is at least . A similar phenomenon occurs in hyperbolic geometry, except that the sum of the angles of a triangle is less than . Dehn's examples use a non-Archimedean field, so that the Archimedean axiom is violated. They were introduced by and discussed by . Dehn's non-archimedean field Ω(''t'') To construct his geometries, Dehn used a non-Archimedean ordered Pythagorean field Ω(''t''), a Pythagorean closure of the field of rational functions R(''t''), consisting of the smallest field of real-valued functions on the real line containing the real constants, the identity function ''t'' (taking any real number to itself) and closed under the operation \omega \mapsto \sqrt . The field Ω(''t'') is ordered by putting ''x'' >&nb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Archimedean Axiom
In abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some algebraic structures, such as ordered or normed groups, and fields. The property, typically construed, states that given two positive numbers ''x'' and ''y'', there is an integer ''n'' such that ''nx'' > ''y''. It also means that the set of natural numbers is not bounded above. Roughly speaking, it is the property of having no ''infinitely large'' or ''infinitely small'' elements. It was Otto Stolz who gave the axiom of Archimedes its name because it appears as Axiom V of Archimedes’ ''On the Sphere and Cylinder''. The notion arose from the theory of magnitudes of Ancient Greece; it still plays an important role in modern mathematics such as David Hilbert's axioms for geometry, and the theories of ordered groups, ordered fields, and local fields. An algebraic structure in which any two non-zero elements are ''comparable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]