HOME
*



picture info

Runtime Verification
Runtime verification is a computing system analysis and execution approach based on extracting information from a running system and using it to detect and possibly react to observed behaviors satisfying or violating certain properties. Some very particular properties, such as datarace and deadlock freedom, are typically desired to be satisfied by all systems and may be best implemented algorithmically. Other properties can be more conveniently captured as formal specifications. Runtime verification specifications are typically expressed in trace predicate formalisms, such as finite state machines, regular expressions, context-free patterns, linear temporal logics, etc., or extensions of these. This allows for a less ad-hoc approach than normal testing. However, any mechanism for monitoring an executing system is considered runtime verification, including verifying against test oracles and reference implementations . When formal requirements specifications are provided, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Race Condition
A race condition or race hazard is the condition of an electronics, software, or other system where the system's substantive behavior is Sequential logic, dependent on the sequence or timing of other uncontrollable events. It becomes a software bug, bug when one or more of the possible behaviors is undesirable. The term ''race condition'' was already in use by 1954, for example in David A. Huffman's doctoral thesis "The synthesis of sequential switching circuits". Race conditions can occur especially in logic gate, logic circuits, thread (computing), multithreaded, or distributed computing, distributed software programs. In electronics A typical example of a race condition may occur when a logic gate combines signals that have traveled along different paths from the same source. The inputs to the gate can change at slightly different times in response to a change in the source signal. The output may, for a brief period, change to an unwanted state before settling back to the d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Runtime Verification Monitor
Runtime, run-time, or run time may refer to: Computing *Runtime (program lifecycle phase), the period during which a computer program is executing * Runtime library, a program library designed to implement functions built into a programming language * Runtime system, software designed to support the execution of computer programs * Software execution, the process of performing instructions one by one during the runtime phase Art and entertainment * The duration of a film A film also called a movie, motion picture, moving picture, picture, photoplay or (slang) flick is a work of visual art that simulates experiences and otherwise communicates ideas, stories, perceptions, feelings, beauty, or atmosphere ..., song, or television program See also * * * * * ''Running Time'' (film) {{Disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Aspect-oriented Programming
In computing, aspect-oriented programming (AOP) is a programming paradigm that aims to increase modularity by allowing the separation of cross-cutting concerns. It does so by adding behavior to existing code (an advice) ''without'' modifying the code itself, instead separately specifying which code is modified via a " pointcut" specification, such as "log all function calls when the function's name begins with 'set. This allows behaviors that are not central to the business logic (such as logging) to be added to a program without cluttering the code core to the functionality. AOP includes programming methods and tools that support the modularization of concerns at the level of the source code, while aspect-oriented software development refers to a whole engineering discipline. Aspect-oriented programming entails breaking down program logic into distinct parts (so-called ''concerns'', cohesive areas of functionality). Nearly all programming paradigms support some level of group ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vector Clock
A vector clock is a data structure used for determining the partial ordering of events in a distributed system and detecting causality violations. Just as in Lamport timestamps, inter-process messages contain the state of the sending process's logical clock. A vector clock of a system of ''N'' processes is an array/vector of ''N'' logical clocks, one clock per process; a local "largest possible values" copy of the global clock-array is kept in each process. Denote VC_i as the vector clock maintained by process i, the clock updates proceed as follows: * Initially all clocks are zero. * Each time a process experiences an internal event, it increments its own logical clock in the vector by one. For instance, upon an event at process i, it updates VC_ \leftarrow VC_ + 1. * Each time a process sends a message, it increments its own logical clock in the vector by one (as in the bullet above, but not twice for the same event) and then the message piggybacks a copy of its own vector ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Static Program Analysis
In computer science, static program analysis (or static analysis) is the analysis of computer programs performed without executing them, in contrast with dynamic program analysis, which is performed on programs during their execution. The term is usually applied to analysis performed by an automated tool, with human analysis typically being called "program understanding", program comprehension, or code review. In the last of these, software inspection and software walkthroughs are also used. In most cases the analysis is performed on some version of a program's source code, and, in other cases, on some form of its object code. Rationale The sophistication of the analysis performed by tools varies from those that only consider the behaviour of individual statements and declarations, to those that include the complete source code of a program in their analysis. The uses of the information obtained from the analysis vary from highlighting possible coding errors (e.g., the lint t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Temporal Logic To Büchi Automaton
In formal verification, finite state model checking needs to find a Büchi automaton (BA) equivalent to a given linear temporal logic (LTL) formula, i.e., such that the LTL formula and the BA recognize the same ω-language. There are algorithms that translate an LTL formula to a BA.M.Y. Vardi and P. Wolper, Reasoning about infinite computations, Information and Computation, 115(1994), 1–37.Y. Kesten, Z. Manna, H. McGuire, A. Pnueli, A decision algorithm for full propositional temporal logic, CAV’93, Elounda, Greece, LNCS 697, Springer–Verlag, 97-109.R. Gerth, D. Peled, M.Y. Vardi and P. Wolper, "Simple On-The-Fly Automatic Verification of Linear Temporal Logic," Proc. IFIP/WG6.1 Symp. Protocol Specification, Testing, and Verification (PSTV95), pp. 3-18,Warsaw, Poland, Chapman & Hall, June 1995. P. Gastin and D. Oddoux, Fast LTL to Büchi automata translation, Thirteenth Conference on Computer Aided Verification (CAV ′01), number 2102 in LNCS, Springer-Verlag (2001), pp. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Büchi Automaton
In computer science and automata theory, a deterministic Büchi automaton is a theoretical machine which either accepts or rejects infinite inputs. Such a machine has a set of states and a transition function, which determines which state the machine should move to from its current state when it reads the next input character. Some states are accepting states and one state is the start state. The machine accepts an input if and only if it will pass through an accepting state infinitely many times as it reads the input. A non-deterministic Büchi automaton, later referred to just as a Büchi automaton, has a transition function which may have multiple outputs, leading to many possible paths for the same input; it accepts an infinite input if and only if some possible path is accepting. Deterministic and non-deterministic Büchi automata generalize deterministic finite automata and nondeterministic finite automata to infinite inputs. Each are types of ω-automata. Büchi automata r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finite-state Machine
A finite-state machine (FSM) or finite-state automaton (FSA, plural: ''automata''), finite automaton, or simply a state machine, is a mathematical model of computation. It is an abstract machine that can be in exactly one of a finite number of '' states'' at any given time. The FSM can change from one state to another in response to some inputs; the change from one state to another is called a ''transition''. An FSM is defined by a list of its states, its initial state, and the inputs that trigger each transition. Finite-state machines are of two types— deterministic finite-state machines and non-deterministic finite-state machines. A deterministic finite-state machine can be constructed equivalent to any non-deterministic one. The behavior of state machines can be observed in many devices in modern society that perform a predetermined sequence of actions depending on a sequence of events with which they are presented. Simple examples are vending machines, which dispense p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Formal Language
In logic, mathematics, computer science, and linguistics, a formal language consists of words whose letters are taken from an alphabet and are well-formed according to a specific set of rules. The alphabet of a formal language consists of symbols, letters, or tokens that concatenate into strings of the language. Each string concatenated from symbols of this alphabet is called a word, and the words that belong to a particular formal language are sometimes called ''well-formed words'' or '' well-formed formulas''. A formal language is often defined by means of a formal grammar such as a regular grammar or context-free grammar, which consists of its formation rules. In computer science, formal languages are used among others as the basis for defining the grammar of programming languages and formalized versions of subsets of natural languages in which the words of the language represent concepts that are associated with particular meanings or semantics. In computational comple ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]